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Abstract—Control flow coverage criteria are an important part
of the process of qualifying embedded software for safety-critical
systems. Criteria such as modified condition/decision coverage
(MC/DC) as defined by DO-178B are used by regulators to judge
the adequacy of testing and by QA engineers to design tests when
full path coverage is impossible.

Despite their importance, these coverage criteria are often
misunderstood. One problem is that their definitions are typically
written in natural language specification documents, making
them imprecise. Other works have proposed formal definitions
using binary predicate logic, but these definitions are difficult
to apply to the analysis of real programs. Control-Flow Graphs
(CFGs) are the most common model for analyzing program logic
in compilers, and seem to be a good fit for defining and analyzing
coverage criteria. However, CFGs discard the explicit concept of
a decision, making their use for this task seem impossible.

In this paper, we show how to annotate a CFG with decision
information inferred from the graph itself. We call this annotated
model a Control-Flow Decision Graph (CFDG) and we use it
to formally define several common coverage criteria. We have
implemented our algorithms in a tool which we show can be
applied to automatically annotate CFGs output from popular
compilers.

I. INTRODUCTION

Control flow coverage criteria are an important part in the
process of qualifying embedded software for safety-critical
systems. Standards such as DO-178B/C in aerospace systems
and ISO-26262 in the automotive domain prescribe modified
condition/decision coverage (MC/DC) as a prerequisite for
software test design. Coverage criteria are used during soft-
ware qualification to guide test design and demonstrate that
no part of the code base is overlooked.

Despite their importance, coverage criteria are often mis-
understood. One problem is that their definitions are typically
written in natural language specification documents, making
them imprecise. Other works have proposed formal definitions
using binary predicate logic or Z notation, but these definitions
can be difficult to apply to the analysis of real programs.
One of the most common representations of program control
flow is the Control-Flow Graph (CFG), which is used by
most compilers for optimization and analysis, and is easy to
represent visually. As such, modeling coverage criteria using
CFGs seems like a natural fit to improve user comprehension
and simplify automated measurement.

Unfortunately, CFGs do not explicitly retain a concept
that is crucial to measuring control-flow coverage criteria:
decisions. Decisions represent potentially complex branch
conditions in programs, and they may be represented as
multiple vertices in a CFG. To define coverage criteria using
a CFG model and represent it for easier human and machine
comprehension, decisions need to be made explicit.

In this paper, we propose an intermediate representation
of program logic that extends CFGs to represent decisions
explicitly called Control-Flow Decision Graphs (CFDGs). We
show how to automatically transform a CFG into a CFDG and
we use this structure to formalize common control flow test
coverage criteria. Our method is implemented as a tool that
can be used to annotate CFGs output by the popular GCC and
Clang compilers in dot format, allowing them to be visually
compared.

The remainder of the paper is structured as follows: Sec-
tion II discusses related work. Section III defines terms and
notation used in the paper. Section IV presents the context
of the problem and why it is important. Section V defines a
Control-Flow Decision Graph. Section VI uses the model to
formally define test coverage criteria. Section VII introduces
a tool to annotate CFGs output by popular compilers. Sec-
tion VIII concludes the paper.

II. RELATED WORK

Previous works have formalized coverage criteria require-
ments for comparison purposes. Comar et al. formalized
MC/DC coverage using Branch Decision Diagrams to compare
with Object Branch Coverage [1]. Vilkomir and Bowen used
Z notation to formalize and compare traditional test coverage
criteria including MC/DC in [2], [3], and added RC/DC in [4].
They applied the same techniques to formalize other regulatory
requirements in the Z notation in [5]. Woodward and Hennell
compared JJ-Path, or LCSAJ, coverage to MC/DC and defined
when JJ-Path subsumes MC/DC [6]. Kirner proposed a formal
model for MC/DC to be used to show that transformation and
compilation do not result in coverage violations [7]. Ammann
et al. formalized a comprehensive set of criteria using boolean
predicate logic [8]. Kapoor and Bowen used boolean logic
to compare the fault detection effectiveness of MC/DC and



RC/DC [9]. Kosmatov et al. formalized data-oriented boundary
testing heuristics for a new family of model-based coverage
criteria [10].

Other works have formalized coverage criteria for automatic
test case generation. In 1994, Jasper et al. proposed using
their Ada framework (TSDT) to generate test cases that met
MC/DC requirements [11]. They modeled the criterion using
two functions on tuples of boolean expressions and vectors.
Ghani and Clark proposed using search-based test generation
to meet MC/DC requirements [12]. They used an AST-based
emitter to export decisions in disjunctive normal form (DNF),
then used them in cost functions for simulated annealing.
Offutt, Xiong and Liu introduced a method of test code
generation coverage criteria such as FPC from SCR condition
tables or UML state charts [13].

III. DEFINITIONS AND NOTATION

In this section, we present definitions of terms and notation
used throughout the paper.

A. Conditions and Decisions

A condition is an expression defined on a Boolean (B)
algebra with elements true and false. A decision is a function
from two or more conditions and binary operators to a two-
valued boolean algebra B. The operators in a decision may
be any of the following: normal AND (∧), short-circuit AND
(&&), normal OR (∨), short-circuit OR ( || ), and XOR (⊕).
For example, the decision (a ⊕ b) combines two conditions
(reading the values of symbols a and b) with an XOR.

A decision is equivalent to an if statement in imperative
programming, or any equivalent structures that make decisions
about the control flow of the program such as a while
statement.

B. Test Coverage

An input is a mapping from a symbol in a program to a
concrete, true or false, value. One input can map to one or
more conditions. For example, the decision (a⊕b∨a) combines
three conditions, two of which a are mapped to the same input
and one which b is mapped to a second input.

A test t ∈ B∗ is a finite sequence of Boolean values mapping
the inputs of a program to concrete values. Note that we
assume a fixed order for program symbols, permitting the
omission of explicit symbol mapping. A test suite T ∈ 2B

∗

is a set of tests.

C. Control Flow Graph

A control flow graph (CFG) of a program is a connected,
directed graph G = (V,E) where each vertex v ∈ V has
outdegree ≤ 2 and represents a program point and each edge
(t, h) ∈ E represents the possibility that execution after the
end of the tail (t) may continue with the beginning of the head
(h) [14]. The domain of vertices is given by V , so the domain
of CFGs is G = V × (V × V).

Each edge represents possible program flow and each vertex
(a program point) is equivalent to a single statement. A CFG
has a single entry vertex, given by the function entry : G → V ,
which is a special vertex with indegree 0 from which the
program flow begins. A CFG has a set of one-or-more exit
vertices, given by the function exit : G → V , which are
special vertices with outdegree 0 at which the program flow
ends. A vertex in a CFG dominates another vertex if all
paths from the entry vertex to the dominated vertex must pass
through the dominating vertex. The entry vertex dominates
every other vertex in the CFG. A vertex has successor vertices
given by the function successors : V → 2V defined as
successors(v) = {s ∈ V : (v, s) ∈ E}.

D. Program Runs

We define Run : G×B∗ → E∗∪Eω to be a function from a
CFG and a test to the sequence of edges in the CFG (t, h) ∈ E
that are traversed. The sequence, called a (lowercase) run, can
be finite or infinite. Runs returned by Run must begin with the
entry node and, if finite, end with an exit node.

A run may walk each edge zero or more times. Walking
an edge zero times means that the condition represented by
the vertex before the edge never resulted in a choice of
that edge when executing the program with the given input.
Edges may be walked more than once due to loops in the
program. A run may be a finite sequence in the case of a
terminating program or an infinite sequence in the case of a
non-terminating program.

Listing 1 shows a program with a single decision containing
a short-circuit AND operator, and two conditions, each with
a separate input. Figure 1 shows three copies of the CFG
for this program. Each of the graphs contains a run of the
program, with the executed edges marked as dashed lines and
highlighted in red. Below each graph, the state of both inputs
is given.

Listing 1: A program with one decision and two conditions
x = 0 ;

i f ( a && b ) {
x = 1 ;

}

re turn x ;

For example, in Figure 1b, a is true, so the vertex with b is
reached. Since b is false, the vertex with x = 1 is not reached
and the program instead continues to the final statement.

IV. MOTIVATION

The most widely used and accepted model for program
control flow is the CFG. CFGs are relatively simple but contain
all of the necessary information to analyze program control
flow properties. However, CFGs do not explicitly define the



x = 0

a

T F

b

T F

return x

x = 1

(a) ¬a, b ∨ ¬a,¬b

x = 0

a

T F

b

T F

return x

x = 1

(b) a,¬b

x = 0

a

T F

b

T F

return x

x = 1

(c) a, b

Fig. 1: Possible runs of the program in Listing 1

concept of a decision, making them difficult to use to model
coverage criteria.

Control flow test coverage criteria specify the control flow
properties of the tests in a coverage. They are typically defined
in natural language documents which are open to interpretation
by engineers and regulators and are often misunderstood and
misapplied. A natural fit for describing and analyzing these
coverage criteria is a CFG, but many such criteria rely on
the definition of decisions, which CFGs lack. For example, a
commonly used criteria is decision coverage, which specifies
that executing a test suite must result in the program taking
all possible outcomes from every decision.

Prior methods of formalizing control flow test coverages
have typically used boolean predicate logic to construct solvers
to either test that a coverage meets a criterion or to automat-
ically generate test coverages that do so. These efforts are
useful in that they have formalized the criteria so that meeting
them is unambiguous. However, these efforts do not facilitate
finding other properties of test coverage criteria, or give users
other methods to reason about them. We believe that modifying
CFGs to carry decision coverage information provides more
natural way to express formal coverage criteria and can help
users to reason about those criteria in their test development.

One idea that has been proposed is to use object code
coverage in place of other criteria when information about
decisions is lacking. CFGs can even be inferred from dynamic
analysis of compiled binaries [15]. While it is true that object
code (i.e., the assembly-level output of a compiler) is closer to
what the system will execute, object code discards information
about the intent of the program that may be important and
that is present in the source code. In particular, object code
coverage does not change the MC/DC requirements [1]. The
Federal Aviation Administration (FAA) allows the use of
object code coverage only when it is shown to be equivalent

to source code coverage [16]. This means that the coverage
criteria must use source code, not object code, to define the
notion of a decision.

V. CONTROL-FLOW DECISION GRAPHS

In this section, we construct a model that can be used to
formally describe the control flow of a program and many
control-flow test coverage criteria. We show how to infer
decision information from a CFG to construct such a model.
We later use this model to formalize the test coverage criteria
in Section VI. Note that, throughout this section, we assume
that conditions are represented by single vertices and that
decisions contain no extra, interstitial vertices. We define
an interstitial vertex, in this case, as a non-condition vertex
that appears between condition vertices within a decision. In
Section VII, we show that these assumptions do not always
hold when using CFGs output by certain tools.

To model control flow through a decision in the DFG we can
use the common practice from interprocedural analysis [17]
of adding a subgraph to a CFG which usually represents a
called function. The subgraph of the decision only has one
entry edge, leading to one entry vertex which dominates the
subgraph. That there is only one entry vertex is easy to see
from the definition of a CFG and a decision. Incoming edges
to a CFG vertex represent the possibility of control flow
transitioning to the beginning of that vertex.

We define a Control-Flow Decision Graph (CFDG) as a
CFG with an additional set of decision subgraphs that group
vertices of the CFG. We create a CFDG from a CFG by
subgraphs of conditions in the shape of decisions. The CFG is
then represented by the CFDG = (G,Ds), where G = (V,E)
is the original CFG, and Ds is the set of decision subgraphs.
Once these subgraphs are created we can reason about them
independently, and understand their relations.

The idea of inferring decisions from CFGs comes from an
observation of their shape. First, consider that any vertex in
a CFG with outdegree 2 is a condition. All conditions are
part of a decision (that may contain only one condition). Of
the five Boolean operators we consider for decisions (∧, &&,
∨, ||, and ⊕), ∧, ∨ and ⊕ only require one CFG vertex. This
makes sense if one considers the effect that no short-circuiting
has on evaluation - both sides of the operator must always be
evaluated so there is no alternative control flow that would split
the vertex (basic block). As such, we need only to consider
multiple vertices for the short-circuit operators: && and ||.

Lemma 1 (Outdegree of Decision Subgraphs). A decision
can be represented as a control flow subgraph that has two
successor vertices.

Proof. The statement is proved by construction, observing that
a decision involves a conditional expression that evaluates to
a binary result, and control continues at one of two possible
vertices, depending on this binary result. Thus, we can always
construct a subgraph for a decision with exactly two successor
vertices. �



Lemma 2 (Indegree of Decision Subgraphs). A decision can
be represented as a control flow subgraph which is dominated
by a single entry vertex.

Proof. We will prove the statement by induction on the
number of conditions. The base case is a decision with one
condition. The statement is trivially true in this case since the
graph contains a single vertex representing the condition.

As induction hypothesis, we assume that the statement is
true for decisions consisting of n conditions.

We will show the induction step by contradiction. Consider
a decision with n+ 1 conditions and assume, for the purpose
of a contradiction, that it is not dominated by a single vertex.

The lexical rules we have established require us to express
the decision as a condition combined via a binary operator
with a decision with n conditions. If the graph for a decision
with n+1 conditions is not dominated by a single vertex, then
there must be an incoming edge to a vertex in the decision
subgraph. The resulting structure cannot happen with natural
conditional constructs, and would require a label right after the
first condition (to be targeted by a goto statement), which is
not allowed. �

Theorem 1 (Shared Successors of Conditions in a Decision).
Assuming no interstitial vertices within a decision in a CFG,
the subgraph that corresponds to a decision has one prede-
cessor and two successors, and all conditions in that decision
must share a successor with the subgraph.

Proof. The first part of the statement follows directly from
lemmas 1 and 2.

The second part can be shown by induction on the number
of conditions. The base case is a decision with one condition.
The statement is trivially true in this case since the decision
subgraph contains a single vertex representing the condition,
so they must share all successors.

As induction hypothesis, we assume that the statement is
true for decisions consisting of n conditions.

We will show the induction step by contradiction. Assume
a decision with n+ 1 conditions such that the first condition
shares no successors with the decision subgraph. Since the
decision can only have two successors and the final condition’s
successors are those two, the first condition’s successors must
be vertices within the decision subgraph. Since, by definition,
a condition has two successors, the two vertices within the
decision must be different. This contradicts Lemma 2 that says
the decision with n conditions must be dominated by a single
vertex, as it would add an incoming edge to a vertex in the
decision that does not pass through the entry vertex. �

A. Algorithm

Figure 1 shows a CFG with one decision including an
&& operator. In the CFG, there are two decisions, a and
b, that must be true to reach the vertex with x = 1. If
either is false, the outgoing edge leads to the same vertex

containing return x. This same shape is true for any &&
decision; any condition that is false leads to the same successor
vertex. Crucially, || decisions are shaped identically, except
that the equal successor vertex is reached on a true condition.
This leads to the algorithms below. Note that we overload
the successor : 2V → 2V function for sets of vertices that
represent decision subgraphs, defined as successor(D) = {s ∈
V : (c, s) ∈ E ∧ c ∈ D} for a CFDG (G,V ), Ds.

The procedure for annotating a CFG to create a CFDG is
given in Algorithms 1 and 2. The initial procedure is given
in Algorithm 1, which takes a CFG as its input and returns
the CFDG. The algorithm first sets up a data structure to
ensure that vertices are only visited once, which is necessary
in case of loops. It then sets up a data structure Dmap that
maps condition vertices to a set of vertices that represents a
decision. Then, the algorithm iterates over these sets, calling
merge on each one, so long as the vertex that maps to it has not
yet been visited. Note that the parameters, especially visited
and Dmap, should be considered passed-by-reference.

Algorithm 2 works by recursing over subsequent decisions,
merging each one reverse order and returning the successor
vertices of the decision. On Line 2, the successors of the
decision D1 are iterated over. This should be understood as
the union of all the successors to the vertices in D1 (a set). If
a successor has not been visited, it is checked to see if it is
a condition. If it is, then its current decision is looked up in
the map and is recursed on, getting the set of its successors
from the return. Then, on Line 8, if the successors returned
by the recursive call contain a shared successor with D1 (not
the current successor we iterated over), then the decisions are
merged, and the map is updated for all contained vertices.

Algorithm 1 CFDG Creation Algorithm

1: procedure CREATECFDG( (V,E) )
2: visited← {v 7→ false : v ∈ V }
3: Dmap ← {v 7→ {v} : v ∈ V . outdegree(v) = 2}
4: for v 7→ D1 ∈ V do
5: if not visited(v) then
6: merge( D1, Dmap, visited )
7: return (V,E), {Ds : v 7→ Ds ∈ Dmap}

B. Example of constructing a CFDG

Listing 2: One decision with three conditions
x = ( ( a && b ) | | c ) ;

Consider the program in Listing 2, which contains one
decision with a short-circuit AND as well as a short-circuit
OR, and three conditions. Figure 2a shows the CFG for this
program where the vertices representing the conditions are
shown with rounded corners.

At the beginning of the algorithm, Algorithm 1 iterates
over the conditions, forming the decision subgraphs Di for
i ∈ {1, 2, 3}, which are represented by black, solid-line boxes



Algorithm 2 Decision Merging Algorithm

1: procedure MERGE( D1, DMAP, visited )
2: for s ∈ successors(D1) do . s is a vertex
3: if not visited(s) then
4: visited(s) ← true
5: if outdegree(s) = 2 then . s is a condition
6: D2 ← Dmap(s)
7: S ← merge( D2, Dmap, visited )
8: if successors(D1) \ s ∩ S 6= ∅ then
9: D1 ← D1 ∪D2 . merge!

10: for v 7→ ∈ D1 do
11: Dmap(v)← D1

12: return successors(D1)

a

T F

b

T F

c

T F

T F

D1

D2

D3

(a) Step 1

a

T F

b

T F

c

T F

T F

D1

D2

(b) Step 2

a

T F

b

T F

c

T F

T F

D1

(c) Step 3

Fig. 2: Steps of Algorithms 1 and 2 on the CFG for Listing 2

around the condition vertices. The algorithm then calls merge
on Decision D1.

Algorithm 2 then recurses forward in the CFG, until it
reaches the last decision D3 containing the condition vertex,
c. The recursive call to merge on D3 (Line 7) returns the set
of its successor vertices, {T, F}. This set is then compared
to the successors of D2, subtracting the entry vertex of D3,
c. The intersection of those two successor sets is non-empty,
since the T vertex is shared by both sets. This is shown
in Figure 2a, where the two edges pointing at the shared
successor are highlighted in red and dashed. As a result of this
shared successor, D2 and D3 are merged, and the recursive
call to merge returns the successors of that merged decision,
{T, F}. Like before, and as shown in Figure 2b, the successors
of D1 minus b are compared to {T, F} with the intersection
found non-empty. As such, D1 and D2 are merged, with the
final decision shown in Figure 2c.

C. Correctness and Complexity

Algorithm 1 on its own is trivially correct, assuming that
all conditions are represented as single vertices in a CFG, but
we must argue for the correctness of Algorithm 2.

Theorem 2 (Soundness). Algorithm 2 is sound.

Proof. The proof of soundness for Algorithm is based on
Theorem 1, which says that all conditions in a decision must
share a successor with the decision itself. Algorithm 2 merges
two decisions D1 and D2 when D1’s successors are the entry
vertex of D2 (there is only one, by Lemma 2) and one of the
successors of D2. This forms a new decision which is clearly
sound, as it maintains the same successors, and still has only
one entry vertex (that of D1). �

Theorem 3 (Completeness). Assuming no interstitial vertices
within a decision, Algorithm 2 is complete.

Proof. By our assumption that every condition is represented
as a single vertex, clearly Algorithm 1 will create decisions
for every condition. So, need only show that every pair of
decisions will be merged if they are really in one decision.
It is clear that every decision is compared with its successor
conditions to see if they belong in the same decision. For a
decision to not be merged, it must not share a successor with
its predecessor decision, in which case it is not in the same
decision by Theorem 1. �

Theorem 4 (Correctness). Algorithm 2 is correct.

Proof. By Theorem 2 Algorithm 2 is sound, and by Theorem 3
it is complete. �

Theorem 5 (Complexity). Algorithms 1 and 2 run in linear
time complexity in the size of the CFG.

Proof. Because of the visited data structure, clearly vertices in
a CFG are visited at most twice. This can happen if a vertex
is the last condition in a decision and is visited from a call
to merge from Algorithm 1 before being visited in a recursive
call in Algorithm 2.

Edges are only visited when they are outgoing edges from a
vertex being visited (in calls to successors, with a maximum
of two edges visited per call and a maximum of two calls.
�

VI. TEST COVERAGE CRITERIA DEFINITIONS

This section uses the CFDG model described in Section V
to formally define common test coverage criteria.

Given a program P , its CFDG (V,E), Ds, a function that
defines the set of entry vertices of a graph entry(V,E) =
{v ∈ V : @(·, v) ∈ E}, and a function that defines a set of
exit vertices of a graph exit(V,E) = {v ∈ V : @(v, ·) ∈ E}, a
test suite T , and the set of test runs R = {Run(G, t) : t ∈ T },
we define the following test coverage criteria.



A. Statement Coverage (SC)

Statement coverage (SC) is the simplest criterion, and only
requires that every statement in a program has been executed
at least once [18].
T meets 100% SC requirements for P if it meets the

following condition:

Condition 1 (T contains test cases which visit all of the
vertices).

∀v ∈ V . ∃ r ∈ R . (·, v) ∈ r ∨ (v, ·) ∈ r

B. Decision Coverage (DC)

Decision coverage (DC) expands on SC by stipulating that
every statement in a program has executed at least once, and
every decision in the program has taken all possible outcomes
at least once [18]. Recall that, by Lemma 1, decision subgraphs
in CFDGs have only two successors.
T meets 100% DC requirements for P if it meets Condition

1, and the following condition:

Condition 2 (T contains test cases which visit both of the
outgoing edges from every decision).

∀D ∈ Ds. ∃ r ∈ R. ∃v1, s1, v2, s2 ∈ V .
(v1, s1), (v2, s2) ∈ r ∧ s1 6= s2 ∧ v1, v2 ∈ D ∧ s1, s2 6∈ D

C. Condition Coverage (CC)

Condition coverage (CC), also called branch coverage, is a
stronger expansion on SC, and specifies that every statement in
a program has been executed at least once, and every condition
in every decision has taken all possible outcomes at least
once [18].
T meets 100% CC requirements for P if it meets Condition

1, and the following condition:

Condition 3 (T contains test cases which take both outgoing
edges from every condition vertex in every decision subgraph).

∀D ∈ Ds. ∀v ∈ D. ∃ r ∈ R. ∃s1, s2 ∈ V .
(v, s1), (v, s2) ∈ r ∧ s1 6= s2

D. Decision/Condition Coverage (D/CC)

Decision/condition coverage (D/CC) combines the require-
ments of DC and CC. D/CC specifies that every statement
in a program has been executed at least once, every decision
in the program has taken all possible outcomes at least once,
and every condition in every decision has taken all possible
outcomes at least once [18]. Note that CC does not imply DC
because changing condition outcomes may not imply changing
decision outcomes. To see this, suppose a decision (c1 && c2).
If c1 is varied while c2 is held false, then the decision outcome
does not change.
T meets 100% D/CC coverage requirements for P if it

meets conditions 1, 2, and 3.

E. Multiple Condition Coverage (MCC)

Multiple condition coverage (MCC) is a still stronger crite-
rion. MCC requires that every statement in a program has been
executed at least once, and all possible combinations of the
conditions in every decision have been taken at least once [18].

T meets 100% MCC requirements for P if it meets condi-
tions 1, and the following condition:

Condition 4 (T contains test cases which, for every condition
in every decision, vary only that condition).

∀D ∈ Ds. ∀v ∈ D. ∃ r1, r2 ∈ R. ∃v, s1, s2, c, x ∈ V .
(v, s1) ∈ r1 ∧ (v, s2) ∈ r2 ∧ s1 6= s2 ∧

{(c, x) ∈ r1 : c ∈ D ∧ c 6= v} = {(c, x) ∈ r2 : c ∈ D ∧ c 6= v}

F. Full Predicate Coverage (FPC)

Full predicate coverage (FPC) requires that every statement
in a program has been executed at least once, and every
condition in every decision has taken all possible outcomes
where the outcome is directly correlated to the outcome of the
decision. This is a weaker criterion than MC/DC (introduced
below) in that it does not require other conditions to be held
fixed when varying a condition [13], [2], [3].

T meets 100% FPC requirements for P if it meets condi-
tions 1, and the following condition:

Condition 5 (T contains test cases which, for every condition
in every decision, vary that condition and result in a change
to the outcome of the decision).

∀D ∈ Ds. ∀v ∈ D. ∃ r1, r2 ∈ R. ∃s1, s2, c, x1, x2 ∈ V .
(v, s1) ∈ r1 ∧ (v, s2) ∈ r2 ∧ s1 6= s2 ∧

(c, x1) ∈ r1∧(c, x2) ∈ r2∧c ∈ D∧{x1, x2} = successors(D)

G. Modified Condition/Decision Coverage (MC/DC)

Modified condition/decision coverage (MC/DC) is a crite-
rion for qualifying the completeness of tests used in devel-
opment standards in the avionics and automotive industries,
notably in DO-178B and ISO-26262. It specifies that every
entry and exit point to a program is tested, that every possible
outcome of a decision is tested, that every possible result
of every condition in a decision is tested, and that every
condition in a decision independently affects the decision’s
outcome [19], [1], [20].

T meets 100% MC/DC requirements for P if it meets
conditions 2, 3, and the following conditions:

Condition 6 (T contains a test case which visits the entry
vertex).

∀v ∈ entry(V,E). ∃ r ∈ R. (v, ·) ∈ r



Condition 7 (T contains test cases which visit all of the exit
vertices).

∀v ∈ exit(V,E). ∃ r ∈ R. (·, v) ∈ r

Condition 8 (T contains test cases which, for every condition
in every decision, vary only that condition and result in a
change to the outcome of the decision).

∀D ∈ Ds. ∀v ∈ D. ∃ r1, r2 ∈ R. ∃s1, s2, c, x, o, x1, x2 ∈ V .
(v, s1) ∈ r1 ∧ (v, s2) ∈ r2 ∧ s1 6= s2 ∧

{(c, x) ∈ r1 : c ∈ D ∧ c 6= v} = {(c, x) ∈ r2 : c ∈ D ∧ c 6= v}

∧(o, x1) ∈ r1∧(o, x2) ∈ r2∧o ∈ D∧{x1, x2} = successors(D)

VII. A TOOL TO ANNOTATE CFGS

We implemented the algorithms from Section V-A in an
open-source tool available at [21] called cfg2cfdg. The tool
is written in Python and uses the PyGraphViz [22] library
to read and write GraphViz files in dot format. GraphViz dot
files are a common format for representing graphs for analysis
and visualization, including for CFGs. The popular compilers

Decision 2

Decision 3

%24:

24: 

store volatile i8 1, ptr %8, align 1

 br label %25

%37:

37: 

store volatile i8 0, ptr %6, align 1

 %38 = load volatile i8, ptr %7, align 1

 %39 = add i8 %38, -1

 store volatile i8 %39, ptr %7, align 1

 br label %40

Fig. 3: Parts of a visualized CFG output from Clang annotated
using cfg2cfdg

GNU Compiler Collection (GCC) and Clang are able to write
GraphViz dot files containing CFGs for functions written in
their supported languages and cfg2cfdg can annotate these files
with decision information.

Decision 0

loop 1

<bb 16>:

d.16_23 = d;

if (d.16_23 != 0)

 goto <bb 15>; [INV]

else

 goto <bb 17>; [INV]

<bb 17>:

e.17_24 = e;

if (e.17_24 != 0)

 goto <bb 15>; [INV]

else

 goto <bb 18>; [INV]

<bb 15>:

a.10_13 = a;

a.11_14 = a.10_13;

a.12_15 = (unsigned char) a.11_14;

_16 = a.12_15 + 255;

17 = (char) 16;

<bb 18>:

a.18_25 = a;

a.19_26 = a.18_25;

a.20 27 = (unsigned char) a.19 26;

if (a.8_11 != b.9_12)

 goto <bb 13>; [INV]

else

 goto <bb 14>; [INV]

<bb 13>:

c = 1;

<bb 14>:

goto <bb 16>; [INV]

Fig. 4: Parts of a visualized CFG output from GCC annotated
using cfg2cfdg

Visualizations of annotated outputs from both compilers are
shown in Figures 3 and 4. In the figure, vertices in the CFDG
are shown as boxes, with arrows showing the edges. The
decision annotations are visible in both graphs as boxes around
the vertices they encapsulate, with the labels Decision #.

Figure 3 shows part of a CFDG from Clang with a complex
decision (Decision 2) with three conditions combined with an
&& and an || operator similar to Listing 2. Clang names each
basic block in the CFG with a comment on the first line in
the form %n before the label n:. In the figure, Decision 2 has
two entry vertices, %24 and %23, and two successor vertices,
%37 and %40. Decision 2 can be understood as a conditional
on %25 || (%29 && %33), where basic-block %37 is reached
if the decision is true, with execution continuing to %40 (no
else block).

Figure 4 shows part of a CFDG from GCC with a loop
where Decision 0 has two conditions, where the back edge is
a dotted blue line. GCC names each basic block by its label:



<bb n>:. In the figure, Decision 0 has two entry vertices,
<bb 14> and <bb 15> (also labeled loop 1), which has
a back-edge creating the loop, and two successor vertices, <bb
15> and <bb 18>. Decision 0 can be understood as a while
loop on <bb 16> || <bb 17>. When the loop terminates, it
continues with <bb 18>.

A. Challenges

Working with the output from these tools means relying
on their specific interpretations of how CFGs should behave,
which does not always align with expectations from the theory.
One challenge we encountered was that Clang adds interstitial
vertices to loops, separating guards and latches. This means
that decisions do not meet the assumptions stated in Section V
and, as such, the algorithm is not complete and decisions are
not properly merged. GCC, on the other hand, treats loops
as we expected, and our tool has no trouble adding decisions
around loop decisions as in Figure 4.

Using the tool is generally simple, requiring only the dot
filename as input and immediately writing out a new dot file
with decision annotations. Visualization of the new CFDG
using open-source GraphViz software is generally easy, but
we did find that in some circumstances it was necessary to
edit the files before visualization. For example, GCC can use
subgraphs in the file to annotate function boundaries, and this
can interfere with visualizing decisions. We found that editing
the function subgraph names to remove the keyword cluster
solved the problem.

VIII. CONCLUSION

We have proposed a model, called a Control-Flow Decision
Graph (CFDG), for formalizing and reasoning about control
flow coverage criteria. We introduced an algorithm to construct
a CFDG from a CFG and proved its correctness and complex-
ity, and then implemented that algorithm in an open-source
tool for annotating CFGs from GCC and Clang [21]. We
also formalize common test coverage criteria using the CFDG
model, showing how explicit information about decisions in a
CFG can help with program understanding and analysis.

It is our hope that this work will provide the basis for further
insight into the relationship of decisions to program logic and
control-flow properties.
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