
Demo Abstract: Event Stream Abstraction Using nfer
Sean Kauffman

Electrical & Computer Engineering
University of Waterloo

Waterloo N2L 3G1, Canada
skauffma@uwaterloo.ca

Sebastian Fischmeister
Electrical & Computer Engineering

University of Waterloo
Waterloo N2L 3G1, Canada

sfischme@uwaterloo.ca

ABSTRACT
We propose to demonstrate the open source implementation
of nfer (http://nfer.io), a language and system for abstract-
ing event streams. The tool is applicable to a wide variety
of cyber-physical systems, and supports both manual and
mined specifications. In addition to basic operation, we will
demonstrate standalone monitor generation and integration
with the popular R and Python languages. The demonstra-
tion will use real-world data captured from applications such
as an autonomous vehicle and a hexacopter.

CCS CONCEPTS
• Theory of computation → Rewrite systems; • Computer
systems organization → Embedded software; • General and
reference → Verification;

KEYWORDS
telemetry comprehension, event stream processing, temporal
logic, runtime verification

ACM Reference format:
Sean Kauffman and Sebastian Fischmeister. 2019. Demo Abstract:
Event Stream Abstraction Using nfer. In Proceedings of ICCPS ’19:
ACM/IEEE International Conference on Cyber-Physical Systems,
Montreal, QC, Canada, April 16–18, 2019 (ICCPS ’19), 2 pages.
https://doi.org/10.1145/3302509.3313327

1 INTRODUCTION
In this demo, we propose to present the open source imple-
mentation of nfer. Nfer is a recently introduced formalism
and system for machine and human comprehension of teleme-
try streams [3–5]. Nfer abstracts an event stream into a
hierarchy of intervals related using a domain-specific lan-
guage (DSL) based on Allen’s Temporal Logic (ATL) [1].
The system has also been extended to mine these intervals
from real-time system traces [2]. There are two, known im-
plementations of nfer. One was written in Scala at the Jet
Propulsion Laboratory (JPL), and another has been written
in C and released under the GNU Public License version 3

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6285-6/19/04. . . $15.00
https://doi.org/10.1145/3302509.3313327

(GPLv3) license at http://nfer.io. For the remainder of this
document, nfer will refer to the C implementation.

Nfer has many potential uses for processing event streams
and logs from cyber-physical systems. The tool was developed
for abstracting spacecraft telemetry, but it is applicable to any
event stream representing system behavior. For example, nfer
is useful for processing Operating System (OS) system call
logs. Nfer is useful for Runtime Verification (RV) of systems,
but its abstractions also compress information. Furthermore,
nfer consumes few system resources, allowing it to be run
on a remote, embedded target.

In this demo we propose to demonstrate the operation
of nfer using easy to understand examples. We will cover
simple concepts from the nfer language where it is necessary
to understand the operation of the tool. The tool can be
run directly using a supplied specification, or a standalone
monitor can be generated for use on a real-time system. The
tool can also mine specifications, given a real-time system
trace. We will also demonstrate the tool’s integration with
the R and Python languages.

2 CONCEPTS TO DEMONSTRATE
We propose to demonstrate the following concrete features of
the nfer tool. By the end of the demonstration the audience
should feel comfortable performing any of these tasks.

∙ Abstracting a trace with nfer:
We will show a simple specification for abstracting Con-
troller Area Network (CAN) logs from an autonomous
vehicle. The logs are from a real-world example and
show how nfer can be used to solve problems in prac-
tice.

∙ Mining a specification with nfer:
We will demonstrate mining a specification from a QNX
system trace using nfer. The mined specification can
then be applied to extract interval abstractions from
the same or other traces.

∙ Building a runtime monitor with nfer:
Nfer support real-time embedded environments by pro-
ducing standalone monitors without system require-
ments like dynamic memory. We will show how to
produce and run such a monitor for a small embedded
system.

∙ Using nfer from R:
We will demonstrate the use of nfer’s R Application
Programming Interface (API). R is a popular language
for statistical processing and nfer can be useful in this
environment to help abstract large datasets.

∙ Using nfer from Python:

332

http://nfer.io
https://doi.org/10.1145/3302509.3313327
https://doi.org/10.1145/3302509.3313327
http://nfer.io

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada Sean Kauffman and Sebastian Fischmeister

We will also show nfer’s Python API. The Python
API is geared toward application developers who want
to include nfer in their projects.

3 CONCLUSION
Nfer is a valuable tool about which cyber-physical systems
researchers and practitioners should want to learn. We pro-
pose to demonstrate the tool, which is available under the
GPLv3 license. By the end of the demonstration, the audi-
ence should feel comfortable installing and using nfer in a
variety of contexts.

We propose to demonstrate several abilities of the nfer
tool. We will show how to apply a manually written spec-
ification to abstract an event stream, and how to mine a
specification from a trace. We will demonstrate how to gener-
ate a standalone monitor using nfer for use in real-time and
resource constrained environments. Finally, we will demon-
strate nfer’s R and Python APIs.

REFERENCES
[1] James F Allen. 1983. Maintaining knowledge about temporal

intervals. Commun. ACM 26, 11 (1983), 832–843.
[2] Sean Kauffman and Sebastian Fischmeister. 2017. Mining Tem-

poral Intervals from Real-time System Traces. In Proceedings
of the 6th International Workshop on Software Mining (Soft-
wareMining). Champaign, USA, 1–8. https://doi.org/10.1109/
SOFTWAREMINING.2017.8100847

[3] Sean Kauffman, Klaus Havelund, and Rajeev Joshi. 2016. nfer–A
Notation and System for Inferring Event Stream Abstractions.
In International Conference on Runtime Verification. Springer,
235–250. https://doi.org/10.1007/978-3-319-46982-9_15

[4] Sean Kauffman, Klaus Havelund, Rajeev Joshi, and Sebastian
Fischmeister. 2018. Inferring Event Stream Abstractions. Formal
Methods in System Design 53, 1 (01 08 2018), 54–82. https:
//doi.org/10.1007/s10703-018-0317-z

[5] Sean Kauffman, Rajeev Joshi, and Klaus Havelund. 2016. Towards
a logic for inferring properties of event streams. In International
Symposium on Leveraging Applications of Formal Methods.
Springer, 394–399. https://doi.org/10.1007/978-3-319-47169-3_
31

333

https://doi.org/10.1109/SOFTWAREMINING.2017.8100847
https://doi.org/10.1109/SOFTWAREMINING.2017.8100847
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/978-3-319-47169-3_31
https://doi.org/10.1007/978-3-319-47169-3_31

	Abstract
	1 Introduction
	2 Concepts to Demonstrate
	3 Conclusion
	References

