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Abstract. In this paper we revisit monitoring real-time systems with
respect to properties expressed either in Metric Interval Temporal Logic
or as Timed Büchi Automata. We offer efficient symbolic online monitor-
ing algorithms in a number of settings, exploiting so-called zones well-
known from efficient model checking of Timed Automata. The settings
considered include new, much simplified treatment of time divergence,
monitoring under timing uncertainty, and extension of monitoring to of-
fer minimum time estimates before conclusive verdicts can be made.
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1 Introduction

Runtime monitoring has gained acceptance as a method for formally verifying
the correctness of executing systems. Monitoring means to test a sequence of
observations of a system against a specification, often written in a formal logic.
Monitoring contrasts with static verification methods, like model checking, in
that it is computationally easier due to only testing a single system execution.
Runtime monitoring may also be applied to black-box systems where details
about the environment and design of the monitored system are not required to
be known in advance.

Many systems have so-called “extra-functional” requirements that must be
expressed with respect to time. These systems, generally called real-time systems,
are pervasive in modern life as the controllers of cyber-physical systems. To
express requirements with time components, logics such as Metric Temporal
Logic (MTL) and derivatives like Metric Interval Temporal Logic (MITL) have
been developed that extend the more classical Linear Temporal Logic (LTL) with
timing constraints [22,2]. Finite Automata have also been extended with time
to form Timed Automata [1]. These formalisms allow the expression of notions
such as that “a response should occur within 20 milliseconds of a request.”

Monitoring timed properties is possible and several solutions have been pro-
posed, each with their own advantages and drawbacks. In this work, we introduce
an efficient solution to the online monitoring problem for timed properties un-
der time divergence. Given a property expressed in MITL and a finite timed
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sequence, our method determines if the property is guaranteed to be satisfied or
violated by any continuation of that finite sequence. Additionally, the eventual
satisfaction or violation of a property considers that any future timing con-
straints will eventually be settled. Note that online monitoring here contrasts
with offline monitoring, where the system is assumed to have terminated and
timed properties are interpreted with finite semantics. In online monitoring,
liveness properties (e.g., “eventually, plaid shirts will be popular”) cannot be
violated since there will always be more symbols, while they can be violated in
offline monitoring, since the entire sequence is known.

In this paper we revisit the monotoring of real-time properties expressed
in the logic MITL. In particular, we offer efficient symbolic online monitoring
algorithms for a number of settings. The symbolic approach exploits the fact that
properties in MITL may be translated into Timed Büchi Automata (TBA) [9]
under a point-wise semantics. Our symbolic approach exploits so-called zones1,
which are used for efficient model checking of Timed Automata [8]. In fact, zones
have been exploited in the tool UPPAAL TRON [23] for on-line testing that the
behavior of a real-time system conforms to a Timed Automata specification.

In the first setting, we offer a new much simplified way of dealing with time
divergence. Time divergence means that, during the infinite behavior of a real-
time system, time progresses beyond any finite bound. Time divergence is stated
as an assumption by most works in the area because it reflects reality. However,
the algorithmic support for time divergence in earlier work seems somewhat
underdeveloped.

To understand how time divergence impacts monitor verdicts, consider the
property “nothing should be observed after an hour.” It should be clear that time
divergence guarantees that no infinite sequence will satisfy this property. Because
we are interested in online monitoring of properties over infinite timed sequences,
the language of the property is empty, and its monitor should evaluate any finite
prefix to be in violation of it. Conversely, a monitor that does not compensate
for time divergence will register an unknown verdict for finite prefixes that do
not include observations past the hour mark.

In a second setting, we extend our algorithmic method for monitoring to the
setting of timing uncertainty, i.e. a setting where the real-valued time-points of
events can only be observed up to a given precision. Finally, in a third and final
setting, we refine the algorithmic monitor to offer guaranteed minimum time
estimates that must pass until a conclusive verdict can be made.

2 Related Work

Many techniques to monitor timed properties have focused on monitoring logics
with finite-word semantics. The first work to introduce timed property monitor-
ing is by Roşu et al. focusing on discrete-time finite-word MTL [31]. Basin et al.
proposed algorithms for monitoring real-time finite-word properties in [5] and
1 also known as DBMs: Difference Bounded Matrices.
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compared the differences between different time models. Ulus et al. described
monitoring Timed Regular Expressions (TREs) for finite words using a union of
two-dimensional zones [32,33].

The most closely related work to ours is that by Bauer et al. in which the au-
thors introduced the classical Three-value LTL (LTL3) monitor construction and
then showed how a similar construction could be used for Timed LTL (TLTL) [6].
Their method transforms a TLTL formula to event-clock automata which are
strictly less expressive than Timed Büchi Automata (TBAs), which we support.
Their algorithm also differs from ours in being based on the so-called region au-
tomata. Though this construction does provide a principle monitoring algorithm,
the performance of zone-based monitoring algorithms provide an order of magni-
tude improvement. Finally, their monitoring algorithm does not readily seem to
support time divergence. Two more recent works have proposed solutions to the
problem of monitoring timed languages specified in MTL. Baldor et al. showed
how to construct a monitor for a dense-time MITL formula by constructing a
tree of timed transducers [3]. They showed how subsets of MITL could be used
to limit the complexity of their technique which requires linear space in the size
of the input for the full fragment. Ho et al. split unbounded and bounded parts
of a dense-time MITL formula for monitoring, using traditional LTL monitoring
for the unbounded parts and permitting a simpler construction for the (finite-
word) bounded parts [18]. Unlike the work by Baldor et al., their method is size
independent of the input. However, it does require non-elementary blowup of the
formula to ensure no unbounded operators appear in the context of a bounded
operator. They also monitor bounded parts using a dynamic programming for-
mulation that relies on a maximum bound for the number of events in a time
span. Neither the solution by Baldor et al. or Ho et al. address time-divergence.

Crucially, none of the previously mentioned works implement their solutions.
On the other hand, some tools have been released for monitoring other timed
logics. Basin et al. implemented MonPoly, which can monitor an expressive finite-
word (safety) fragment of Metric First-Order Temporal Logic (MFOTL) using
discrete time semantics [4]. Bulychev et al. implemented a rewrite-based mon-
itoring algorithm similar to the one proposed in [31] for Weighted MTL in the
Uppaal SMC tool [11]. R2U2 is a tool for generating monitors for Field Pro-
grammable Gate Arrays (FPGAs) developed by Moosbrugger et al. that sup-
ports finite-word MITL properties [26]. Much more recently, Chattopadhyay
and Mamouras presented a verified monitor for discrete, past-time (finite word)
MITL with quantitative semantics [13]. Some tools also exist to convert timed
logics to automata which we will cover in the next section.

3 Preliminaries

We first define some notation used throughout the paper. The set of natural
numbers (including zero) is N. The set of real numbers is R and the set of non-
negative real numbers is R≥0. The set of Boolean values is B and the three-valued
set of monitor verdicts is B3 = {⊤,?,⊥}. We shall assume that B3 is equipped
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with a partial order where ? ⊑ ⊤ and ? ⊑ ⊥. Given a set S the set of all its
subsets is denoted 2S . The cross product of two sets S and T is S × T . Given a
sequence σ, σi denotes the element at the ith position of σ (where one is the first
position) and σi denotes the suffix of σ starting at index i. Given two sequences
s and t, we write s · t to denote their concatenation.

A timed word over a finite alphabet Σ is a pair ρ = (σ, τ) where σ is a
non-empty word over Σ and and τ is a sequence of strictly increasing non-
negative real numbers of the same length as σ. Timed words may be finite or
infinite where the type of finite timed words is TΣ∗ and the type of infinite
timed words is TΣω. We also represent a timed word as a sequence of pairs
(σ1, τ1), (σ2, τ2), . . .. If ρ = (σ1, τ1), (σ2, τ2), . . . (σn, τn) is a finite timed word, we
denote by τ(ρ) the total time duration of ρ, i.e. τn.

Metric Temporal Logic We use the Metric Interval Temporal Logic, MITL, in
this work to formalize examples because we can translate it into the TBAs that
we use in our monitoring algorithm. Brihaye et al. developed the tool MightyL to
translate MITL formulas to TBAs in a compositional manner [9]. Some earlier
work implemented algorithms to translate subsets of MITL to TBAs as well.
Li et al. proposed and implemented Casaal, a tool to construct deterministic
approximations of TBAs from MTL0,∞ formulas [24,10]. Geilen and Dams im-
plemented an algorithm to produce a deterministic Timed Automaton (TA) for
dense-time MITL≤ (a subset of MTL0,∞) using an on-the-fly tableau construc-
tion that discretizes the time domain and only supports an upper bound [17].
Note that some other works exist that provide algorithms for the translation of
MITL or related logics to TBAs, but without providing implementations [16,27].

Let Σ be a finite alphabet. The syntax of MITL formulas over Σ is given by
the following grammar:

φ ::= p | ¬φ | φ ∨ φ | XIφ | φ UIφ

where p ∈ Σ, and I is a non-singular interval over R≥0 with endpoints in
N ∪ {+∞}. Note that we often write ∼n for I = {d ∈ R : d∼n} where ∼ ∈
{<,≤,≥, >}, and n ∈ N.

The semantics of MITL is defined over infinite timed words. Given such a
timed word ρ = (σ1, τ1), (σ2, τ2), . . . ∈ TΣω, a position i ≥ 1, and an MITL
formula φ, we inductively define the satisfaction relation ρ, i |= φ as follows:

ρ, i |= p if p = σi

ρ, i |= ¬φ if ρ, i ̸|= φ
ρ, i |= φ ∨ ψ if ρ, i |= φ or ρ, i |= ψ
ρ, i |= XIφ if ρ, (i+ 1) |= φ and τi+1 − τi ∈ I
ρ, i |= φ UIψ if ∃k ≥ i. ρ, k |= ψ, τk − τi−1 ∈ I and ∀j. 1 ≤ j < k. ρ, j |= φ

where τ0 = 0. We write ρ |= φ whenever ρ, 1 |= φ. We also define the standard
syntactic sugar: true = p ∨ ¬p, false = ¬true, φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ =
¬φ ∨ ψ, FIφ = true UIφ, and GIφ = ¬FI¬φ. Given an MITL formula φ, its
language L(φ) is the set of all infinite timed words that satisfy φ.
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Timed Automata A TBA A is a six-tuple (Q,Q0, Σ,C,∆,F), where Σ is a finite
alphabet, Q is a finite set of locations, Q0 ⊆ Q is a set of initial locations, C is
a finite set of clocks, ∆ ⊆ Q × Q × Σ × 2C × G(C) is a finite set of transitions
with G(C) being the type of constraints over C, and F ⊆ Q is a set of accepting
locations. A transition (q, q′, α, λ, g) is an edge from q to q′ on input symbol α
where λ is the set of clocks to reset and g is a clock constraint over C. A clock
constraint is a conjunction of atomic constraints of the form c ∼ n, where c is a
clock, n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. A state of a TBA is a pair (q, v) where
q is a location in Q and v : C → R≥0 is a valuation mapping clocks to their
values. We say that for any d ∈ R≥0, v + d is the valuation where d is added to
all clock values in v.

A run of A from a starting state (q0, v0) is a sequence of steps over a timed
word (σ, τ) of the form

(q0, v0) (σ1,t1)−→ (q1, v1) (σ2,t2)−→ (q2, v2) (σ3,t3)−→ · · ·

where for all i ≥ 1 there is a transition (qi−1, qi, σi, λi, gi) such that vi(c) = 0 for
all c in λi and vi−1(c) + (ti − ti−1) otherwise, and g is satisfied by the valuation
vi−1 + (ti − ti−1). Given a run r, we denote the set of locations visited infinitely
many times by r as inf (r). A run r of A is accepting if inf (r) ∩ F ̸= ∅. The
language of A from a starting state (q, v), denoted L(A, (q, v)), is the set of
all timed words with an accepting run in A starting from (q, v). We define the
language of A, written L(A), to be

⋃
q L(A, (q, v0)), where q ranges over all

locations in Q0 and where v0(c) = 0 for all c ∈ C.
Given two TBAs A = (Q,Q0, Σ,C,∆,F) and A′ = (Q′, Q′

0, Σ,C
′, ∆′,F ′),

their intersection is denoted A ⊗ A′ = (Q⊗, Q⊗
0 , Σ,C

⊗, ∆⊗,F⊗), where
– Q⊗ = Q×Q′ × {1, 2},
– Q⊗

0 = Q0 ×Q′
0 × {1},

– C⊗ = C ∪ C ′ (we assume they are disjoint),
– ∆⊗ = ∆⊗

1 ∪∆⊗
2 with

∆⊗
1 = {((q1, q

′
1, 1), (q2, q

′
2, i), α, λ ∪ λ′, g ∧ g′) : (q1, q2, α, λ, g) ∈ ∆ and

(q′
1, q

′
2, α, λ

′, g′) ∈ ∆′ and i = 2 if q1 ∈ F else i = 1} and
∆⊗

2 = {((q1, q
′
1, 2), (q2, q

′
2, i), α, λ ∪ λ′, g ∧ g′) : (q1, q2, α, λ, g) ∈ ∆ and

(q′
1, q

′
2, α, λ

′, g′) ∈ ∆′ and i = 1 if q′
1 ∈ F ′ else i = 2},

– and F⊗ = (F ×Q′ × {1}) ∪ (Q× F ′ × {2}).
We note that L(A ⊗ A′) = L(A) ∩ L(A′).

4 Monitoring in a Timed Setting

In this section, we describe monitoring and show how it applies in the timed
setting. We first, briefly, introduce monitoring in the untimed case and then
extend it to the timed case.

Traditionally in Runtime Verification (RV), properties are specified using a
temporal logic such as LTL and a monitor is constructed from those properties.
A monitor is a kind of program that takes a finite word as an input and returns a
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verdict depending on the relationship between the input and the property from
which the monitor is constructed. Verdicts are usually of the form accept (⊤),
reject (⊥), or unknown (?), although larger verdict domains exist to provide
more information.

In online monitoring (our interest), the properties specify behaviors over
infinite sequences of symbols, or words, while the monitor must interpret those
specifications over an ever-growing finite prefix of such an infinite word. The
most prevalent solution to this problem is to use a monitor semantics where
acceptance or rejection means that the finite word determines the property and
no future suffix can alter the verdict. In the case where the finite prefix does not
determine the property, the monitor outputs an unknown verdict and continues.

Monitoring languages of timed infinite words works in much the same way
as in the untimed setting. A finite prefix of an infinite timed word is checked to
see if it determines the property. If all possible infinite extensions of the prefix
result in a word that is included in the monitored property, then the monitor
returns the ⊤ verdict. If no possible infinite extensions lead to a word that is
included in the monitored property, then the monitor returns the ⊥ verdict. If
extensions exist that could lead to either outcome, then the monitor returns ?
and continues monitoring.

Definition 1 (Monitor verdicts for timed languages). Given a language
of infinite timed words ϕ ⊆ TΣω and a finite timed word ρ ∈ TΣ∗, the function
V : 2TΣω → TΣ∗ → B3 evaluates to a verdict with the following definition:

V(ϕ)(ρ) =


⊤ if ρ · µ ∈ ϕ for all µ ∈ TΣω,

⊥ if ρ · µ /∈ ϕ for all µ ∈ TΣω,

? otherwise.

Example 1. Consider the bounded response property “whenever a is observed, b
should be observed within 30 time units” that is specified by the MITL formula
φ = G(a → F≤30b) where Σ = {a, b, c}. This property corresponds to the
TBA shown in Figure 1. This type of time-bounded leadsto property is very
common for real-time systems [25]. It states that some trigger a is followed by a
reaction b before the deadline elapses. Note we draw the “sink” state q3 here for
illustrative purposes as we will return to this example later in the paper, but it
can be omitted without changing the language of the automaton.

q1 q2 q3

b, c

a

x := 0

a, c x ≤ 30b

x ≤ 30
a, b, c

x > 30

a, b, c

Fig. 1: TBA corresponding to G(a → F≤30b)
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Now consider the finite timed prefix ρok = (a, 10), (b, 20). The verdict in
this case is V(L(φ))(ρok) = ?, since there are infinite extensions of the prefix
that satisfy the property and those that violate it. For example, if the pattern
of ρok was repeated infinitely many times, the resulting infinite timed word
ρω

ok = ((a, 10 · i), (b, 20 · i))i≥1 would satisfy φ. Now suppose the prefix ρbad =
(a, 10), (b, 50). In this case, the prefix only has infinite extensions that violate
the property, so V(L(φ))(ρbad) = ⊥.

This property demonstrates a way in which timed monitoring differs from the
untimed setting. If we remove the time constraint and consider the (unbounded)
response property G(a → Fb), no finite prefix could ever determine the property
and so the only possible verdict would be ?. This is a classic example of what is
called an unmonitorable property [29,7,21].

5 Time Divergence

Note that Definition 1 does not take time divergence into account, i.e., a verdict
can be based on convergent extensions of a given prefix. As we will see in Exam-
ple 2, this leads to invalid verdicts. In this section, we consider the monitoring
problem in the presence of time divergence and show how it affects the verdicts
from monitors for timed languages. Time divergence entails that time will always
progress beyond any given time-bound.

We begin by defining the type of infinite time divergent words. These are the
only timed words that will occur in practice, since time always diverges. Math-
ematically, however, the type TΣω includes words that are not time divergent,
e.g., (α, 1

2 ), (α, 3
4 ), (α, 7

8 ), . . .. The definition states that time divergent words are
those where the time sequence is unbounded. Note that we do not consider fi-
nite timed words either divergent or convergent even though their time sequences
technically converge.

Definition 2. The set of all time divergent words TDΣω ⊆ TΣω is the set of all
timed words (σ1, τ1), (σ2, τ2) . . . such that limi→∞ τi = +∞.

We now use the set of time divergent words to define a verdict function
that accounts for time divergence. Crucially, the properties that we monitor
may include non-time divergent words. In that case, the verdict returned by
the evaluation function under time divergence VD may differ from the verdict
returned by V.

Definition 3 (Monitor verdicts under time divergence). Given a lan-
guage of infinite timed words ϕ ⊆ TΣω and a finite timed word ρ ∈ TΣ∗, the
function VD : 2TΣω → TΣ∗ → B3 evaluates to a verdict with the following
definition:

VD(ϕ)(ρ) =


⊤ if ρ · µ ∈ ϕ for all µ ∈ TDΣω,

⊥ if ρ · µ /∈ ϕ for all µ ∈ TDΣω,

? otherwise.
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Example 2. Consider the property “the system will continue past 20 time units”
represented by the MITL formula φ = F≥20a, where Σ = {a}. This property
corresponds to the TBA shown in Figure 2.

q1 q2

a

a

x ≥ 20

a

Fig. 2: TBA corresponding to F≥20a

If this property is monitored, the verdict may change depending on whether
time divergence is accounted for. Under time divergence, this property is clearly
a tautology since all infinite time divergent words must eventually reach time 20
and location q2. However, if time divergence is not assumed as in Definition 1,
then it is possible for an infinite timed word to never pass time 20 and therefore
stay in location q1.

Suppose, for example, the finite timed prefix ρ = (a, 10). Since φ is a tautol-
ogy under time divergence, VD(L(φ))(ρ) = ⊤. However, V(L(φ))(ρ) = ?, since
TΣω contains time-convergent suffixes to ρ that are in not in the language of φ.

To ensure that verdicts are correct for all properties, we monitor an intersec-
tion of the given automata with a special TBA that only accepts time divergent
words. This TBA, which we will call AD, is shown in Figure 3. The automaton
must visit the left location infinitely often to accept and it can only visit this
state once time has passed a threshold of one time unit. Note that the exact
threshold is arbitrary and could be any number; the purpose is ensure that the
language of the automaton is exactly the language of time divergent words.

A B
Σ

z := 0

Σ
z ≥ 1 Σ

z < 1

Fig. 3: TBA AD to model divergence

Theorem 1. The language of AD is exactly the set of all time divergent words.

Example 3. We now consider the complement property to Example 2 that is
accepted by the MITL formula φ = G≥20false. Note that, since we use symbols
in our MITL formulas and not propositions, we cannot write ¬a here but must
use its complement Σ \{a} = ∅ which is equivalent to false in our MITL syntax.
The TBA for φ is shown in Figure 4.
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q1

a

y < 20

Fig. 4: TBA corresponding to G≥20false

Now we want to intersect this TBA with AD to restrict its language to only
time divergent words. The result of this operation is shown in Figure 5. Note that
we are intentionally showing a trivial example to simplify the presentation; a two
state automaton like that in Figure 1 intersected with AD has eight locations
and, in that case, 23 transitions.

B1 A1

A2 B2

a
y < 20

z := 0
a

y < 20
z := 0a y < 20

a

y < 20, z ≥ 1

a

y < 20

Fig. 5: TBA corresponding to G≥20false intersected with AD

In this TBA, an accepting run must visit location A2 infinitely many times.
However, it should be clear that this is not possible, since the run must include
fewer than 20 combinations of the transition from B1 to B2 (which resets the
z clock) and the transition from B2 to A2, which requires that it passes 1. The
reason is that the latter transition also requires the clock y to stay below 20 and
y is never reset. The result is that the automaton has an empty language.

6 A Symbolic Method for Monitoring

In this section, we describe an algorithm to monitor languages of infinite timed
words that correctly accounts for time divergence. Our algorithm is loosely based
on the classical construction for monitoring LTL3 by Bauer et al. [6], but with
alterations to address the many differences between the timed and untimed do-
mains.

Our solution requires that properties are specified as two TBAs - one for the
property and one for its complement. Although non-deterministic TBAs are not
closed under complementation, we consider this requirement to not be too much
of a limitation. This is because we expect a property to be expressed by a user
in MITL, which, along with its negation, can be converted to a TBAs using one
of the methods described in Section 3.
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Before we address the monitoring algorithm, we first introduce the notions of
states of a TBA with a non-empty language and state estimates. Given a TBA
A, a state (q, v) has a non-empty language when it has an accepting run starting
in (q, v).

Definition 4. Given a TBA A = (Q,Q0, Σ,C,∆,F), the set of states with
non-empty language is Sne

A = {(q, v) : q ∈ Q, v ∈ C → R≥0. L(A, (q, v)) ̸= ∅}.

In the following definition, we write (q0, v0) ρ−→A (q, v) to denote a run that
takes A from (q0, v0) to (q, v) processing the input ρ.

Definition 5. Given a TBA A and a finite timed word ρ ∈ TΣ∗, the set of
possible states a run over ρ starting from initial states of A can end in is given
by TA(ρ) = {(q, v) : (q0, v0) ρ−→A (q, v) where (q0, v0) is an initial state of A}.
We call this the state estimate of A over ρ.

Note that the state estimate TA(ρ) is always a finite set of states of A.
We can now define a function to compute a monitor verdict using Defini-

tions 4 and 5. To determine a verdict for a language ϕ ⊆ TΣω, the function
requires both a TBA A such that L(A) = ϕ and its complement, A. Definition 6
states that a finite timed word ρ ∈ TΣ∗ positively (negatively) determines the
property under time divergence if the states of A⊗AD (A⊗AD) with non-empty
languages are disjoint from the state estimate of A ⊗ AD (A ⊗ AD) over ρ.

Definition 6 (Monitoring TBAs under time divergence). Given a TBA A,
its complement A (L(A) = TΣω \ L(A)), the automaton AD such that L(AD) =
TDΣω, and a finite timed word ρ ∈ TΣ∗, M : A × A → TΣ∗ → B3 computes a
verdict with the following definition.

M(A,A)(ρ) =


⊤ if TA⊗AD

(ρ) ∩ Sne
A⊗AD

= ∅
⊥ if TA⊗AD(ρ) ∩ Sne

A⊗AD
= ∅

? otherwise

Theorem 2. M(A,A)(ρ) = VD(L(A))(ρ) for all ρ ∈ TΣ∗.

So far, this construction is very similar to the the classical procedure for
monitoring LTL3 with the addition of AD to account for time divergence. How-
ever, the set of states with non-empty languages of a TBA is likely to be infinite,
and its state estimate over a symbolic trace (see Section 7) may be as well. We
now present a symbolic online algorithm to compute these infinite sets and their
intersections in an efficient manner.

Monitoring Algorithm We assume that the language we will monitor ϕ and its
complement ϕ are given as TBAs Aϕ and Aϕ, where L(Aϕ) = ϕ and L(Aϕ) = ϕ.
We begin by computing the intersection of both automata with AD (we hereafter
refer to these intersection automata as A and A). We continue by finding the
states of the automata with non-empty languages, also called the non-empty
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states from Definition 4. We then compute the intersection of the non-empty
states with the state estimate (from Definition 5) of A and A over ρ. If one of
the intersections is empty, then we can output ⊤ or ⊥, otherwise, we output ?.

We can calculate the set Sne
A as a fixpoint using a backwards reachability al-

gorithm. In order to practically work with the states of a TBA we use a symbolic
representation of the clock valuations, namely zones. A symbolic state (q, Z) is
a pair of a location and a zone. A zone is a finite conjunction of lower and upper
bound integer constraints on clocks and clock differences, and may be efficiently
represented using so-called Difference Bounded Matrices (DBMs) [8]. We say
that (q, v) ∈ (q, Z) or v ∈ Z iff v |= Z, such that the clock values in v satisfies
all constraints in Z. Similarly we say that v(x) |= Z if the value v(x) satisfies
the bounds on x in Z. We now define several zone operations, that we will need.

Definition 7. Given two zones Z and Z ′ over a set C of clocks, a set of clocks
λ ⊆ C, a positive real number t and an interval I = [t1, t2] between two positive
real numbers, we define the following operations on zones:

– freeλ(Z) = {v : ∀x ∈ C. v(x) |= Z if x /∈ λ}
– Zfree = freeC(Z)
– Z[λ] = {v : ∃v′ ∈ Z ∀x ∈ C. v(x) = 0 if x ∈ λ otherwise v(x) = v′(x)}
– Z↗ = {v : ∃v′ ∈ Z. v = v′ + d for some d ∈ R≥0}
– Z↘ = {v : ∃v′ ∈ Z. v = v′ − d for some d ∈ R≥0}
– Z↗I = {v : ∃v′ ∈ Z ∀x ∈ C. v′(x) + t1 ≤ v(x) ≤ v′(x) + t2}
– Z ∧ Z ′ = {v : v |= Z and v |= Z ′}
– Z0 = {v : ∀x ∈ C. v(x) = 0}

All of the above operations on zones may be efficiently implemented using
the DBM data-structure [8]. We now proceed to develop the online zone-based
procedure we use to monitor real-time properties specified by TBAs.

PredA(q, Z) (described in Algorithm 1) is the set of symbolic states that
can, by a single transition and delay, reach the state (q, Z) of A.

Algorithm 1 Find the predecessors (single transition) of a state
Input: a TBA A = (Q, Q0, Σ, C, ∆,F) and a symbolic state (q, Z)
Output: PredA(q, Z)

Predecessors← ∅
for (q′, q, α, λ, g) ∈ ∆ do

Z′ = freeλ(Z↘ ∧ {x = 0 : x ∈ λ} ∧ g)
Predecessors← Predecessors ∪ {(q′, Z′)}

end for
return Predecessors

ReachA(S) (described in Algorithm 2) is the set of symbolic states that can,
by at least one transition, reach a state in S.

Reach∞
A (Q′) (described in Algorithm 3) is the set of states that can infinitely

many times reach a location in Q′. We can use this to calculate the set of states,
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Algorithm 2 Compute the states that can reach the given states with at least
one transition
Input: a TBA A and a set of symbolic states S
Output: ReachA(S)

Waiting← ∅
Passed← ∅
for s ∈ S do

Waiting←Waiting ∪ PredA(s)
end for
while Waiting ̸= ∅ do

select and remove s from Waiting
Waiting←Waiting ∪ PredA(s)
Passed← Passed ∪ {s}

end while
return P assed

Algorithm 3 Calculate the set of states that can infinitely often reach a location
in Q

Input: a TBA A and a set of locations Q′

Output: Reach∞
A (Q′)

SQ′ ← ∅
for q ∈ Q′ do

SQ′ ← SQ′ ∪ {(q, Zfree)}
end for
Sa ← SQ′

Sb ← ∅
while Sa ̸= Sb do

Sb ← Sa

Sa ← ReachA(Sa ∩ SQ′ )
end while
return Sa

from which there is a possible accepting run: Given a TBA A we write Reach∞
A

as a shorthand for Reach∞
A (F), where F is the set of accepting locations of A.

Theorem 3. Given a TBA A. Then Reach∞
A = Sne

A .

Using this fixpoint, we can do online monitoring given A and A by storing
the state estimate given by a finite timed word over A and A, while continuously
checking if the state estimates still overlap with Sne

A and Sne
A respectively. If both

state estimates still have non-empty languages, then the verdict is ?, but if all
the states in the state estimate of A have empty languages, then the verdict is
⊥ (⊤ for A).

Given the procedure SuccA described in Algorithm 4 we can compute the
state estimate of A over a finite timed word ρ ∈ TΣ∗ of length n iteratively. If
S0 is the set of initial states then Sn = SuccSn−1

A (αn, tn) = TA(ρ) is the state
estimate after ρ.

12



Algorithm 4 Get the set of possible successor states from S after an input
(α, t)
Input: a TBA A = (Q, Q0, Σ, C, ∆,F), a set of symbolic states S and a timed input

(α, t) ∈ Σ × R≥0
Output: SuccS

A(α, t)
Successors← ∅
for (q, Z) ∈ S do

for (q, q′, α, λ, g) ∈ ∆ do
if Z↗[t,t] |= g then

Successors← Successors ∪ {(q′, (Z↗[t,t] ∧ g)[λ])}
end if

end for
end for
return Successors

An overview of the online monitoring procedure (see Algorithm 5) with Aϕ

and Aϕ is as follows. First we define A and A as the intersection of each input
automaton with AD. We then use the backwards reachability algorithm to com-
pute the set of states that have a non-empty language (in each TBA). While
continuously receiving inputs, we compute the symbolic successor states from
the initial states. After each input, we check if there is an overlap between the
states with a non-empty language, and the state estimates and output a verdict.
The verdict is either ⊤ or ⊥ when one of the state estimates falls outside the set
of states with a non-empty language and ? otherwise.

(a) State space of A (b) State spaces of A

Fig. 6: Illustration of the state spaces in Algorithm 5 given a timed word ρ. The
grey areas are the states with a non-empty language Reach∞

A and Reach∞
A . The

black areas are the state-estimates after ρ, i.e. TA(ρ) and TA(ρ).

Figure 6 shows an example of the state space, with the non-empty states
marked as grey and the current state estimates marked as black. In this example
the verdict would be ?, since both state estimates overlap with the set of states
with a non-empty language.
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Algorithm 5 Online monitoring procedure given Aϕ and Aϕ. Gives a verdict
⊤, ⊥ or ? after each input

time← 0
A ← Aϕ ⊗AD
A ← A

ϕ
⊗AD

S ← {(q, Z0) : q is an initial location of A}
S ← {(q, Z0) : q is an initial location of A}
loop

Receive new input: (α, t) ∈ Σ × R≥0
S ← SuccS

A(α, t− time) // Update state estimate
S ← SuccS

A(α, t− time)
time← t
if S ∩ Reach∞

A = ∅ then
output ⊥

else if S ∩ Reach∞
A = ∅ then

output ⊤
else

output ?
end if

end loop

Example 4. Consider the MITL formula φ = G(a → F≤30b) from Example 1.
We are given the TBA A in Figure 1 and its complement A, the TBA for
φ = F (a∧G≤30¬b) shown in Figure 7. As before, we draw the sink state q4 here
for illustrative purposes. If we were to monitor L(φ), the first step would be to
take the intersections A ⊗ AD and A ⊗ AD, but we skip that here because of the
size of the resulting automata.

q1 q2 q3 q4

a, b, c

a

y := 0

a, c

a, b, c
y > 30

a, b, c

b
y ≤ 30

a, b, c

Fig. 7: TBA corresponding to F (a ∧G≤30¬b)

Now suppose the finite prefix ρok = (a, 10), (b, 20) as seen in Example 1. We
compute the state estimate for A as TA(ρok) = { (q1, {x = 10}) } and for A as
TA(ρok) = { (q1, {y = 20}), (q4, {y = 10}) } where {c = v} represents the sym-
bolic constraints on the clocks of the TBAs. Although the algorithm uses a sym-
bolic representation for the state estimates, for a concrete input the clock con-
straints are equalities. Note that, for A, there are two possible states for ρok since
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A is non-deterministic. For the other Example 1 prefix, ρbad = (a, 10), (b, 50),
TA(ρbad) = { (q3, {x = 40}) } and TA(ρbad) = { (q1, {y = 50}), (q3, {y = 40}) }.

7 Time Uncertainty

So far, we have assumed that we can measure the real-valued time-points τi

appearing in a finite timed word with arbitrary mathematical precision. Given
that our monitor has to be implemented as an algorithm, this cannot necessarily
be achieved. To ensure implementability, we rather assume that the time-points
are observed with a certain precision. More precisely, we assume that we ob-
serve some integer-bounded interval Ii containing τi, e.g. [⌊τ⌋, ⌈τ⌉]. In related
settings, concrete timing information may be missing for many reasons, particu-
larly when monitoring distributed systems [19,30,28]. The problem we consider
is also closely related to the robustness of TA [15] as well as work on monitoring
over unreliable channels [20,21].

We assume that during monitoring, we observe a symbolic timed word of the
form ρs = (σ, υ), where σ is a finite word over the symbol alphabet Σ and υ
is a sequence of time intervals I1, I2, . . . , In of the same length as σ. Each time
interval Ii is a pair of natural numbers [li, ui] (li < ui) representing a lower and
upper bound of the real-valued time-point, when the symbol σi occurred. The
set of finite symbolic timed words is denoted TSΣ∗. We limit bounds in symbolic
timed words to natural numbers which is equivalent to supporting rationals with
a fixed granularity.

Semantically a symbolic timed word ρs = (σ, I1, I2, . . . , In) covers all timed
words (σ, τ) where τi ∈ Ii. We write ρ ⊑ ρs. Also, whenever ρs = (σ, I1, I2, . . . , In)
and ρ′

s = (σ, J1, J2, . . . , Jn) are two symbolic timed words, we write ρs ⊑ ρ′
s if

Ii ⊆ Ji for all i = 1 . . . n.
Now monitoring a language of timed infinite words in the setting of timing

uncertainty refines timed monitoring in the following way. Given a finite symbolic
prefix, it is checked whether all concrete realization of this prefix determine
the property. That is whether all possible infinite extensions of such a concrete
realization are included in the monitored property. More formally:

Definition 8 (Monitoring with timing uncertainty). Given a language of
infinite timed words ϕ ⊆ TΣω and a finite symbolic timed word ρs ∈ TSΣ∗, the
function VU : 2TΣω → TSΣ∗ → B3 evaluates to a verdict with the following
definition:

VU (ϕ)(ρs) =


⊤ if ρ · µ ∈ ϕ for all ρ ⊑ ρs and all µ ∈ TDΣω,

⊥ if ρ · µ /∈ ϕ for all ρ ⊑ ρs and all µ ∈ TDΣω,

? otherwise.

We note that if ρs ⊑ ρ′
s then VU (ϕ)(ρs) ⊑ VU (ϕ)(ρ′

s).

Example 5. Consider the MITL property F[5,6]a, and the concrete timed word
ρ = (b, 1.2), (a, 5.4), (c, 7.3). Assume that we observe time-points as integer-
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bounded intervals of length 1 respectively 2 reflected by the following two sym-
bolic timed words ρ1

s = (b, [1, 2]), (a, [5, 6]), (c, [7, 8]) and ρ2
s = (b, [1, 3]), (a, [5, 7]),

(c, [7, 9]). Now V(F[5,6])a)(ρ) = ⊤ and VU (F[5,6])a)(ρ1
s) = ⊤ whereas

VU (F[5,6])a)(ρ2
s) = ⊥.

To obtain a monitoring algorithm for monitoring under timing uncertainty
it merely requires that the symbolic successor computation of Algorithm 4 is
extended to pairs (α, I) where I is an integer-bounded interval. Thus Algorithm 5
can easily be extended to support time uncertainty.

8 Time Predictive Monitoring

In the timed setting studied in this paper, we want to refine the rather uninfor-
mative verdict ? that occurs during monitoring to provide guaranteed minimum
times before a positive or negative verdict can be made.

Example 6. Consider the MITL property F[20,40]b. Monitoring the finite timed
word ρ = (a, 5.1), (c, 21.0), (c, 30.4), (b, 35.1), (a, 40.2) will result in three ? ver-
dicts followed by the verdict ⊤ when (b, 35.1) is read. However, we may offer
significantly more information, e.g. when reading (a, 5.1) it is clear that at least
14.9 time-units must elapse before we can claim that the property holds, and at
least 34.9 time-units must elaps before we can claim that it does not hold.

Definition 9 (Time Predictive Monitor Verdicts). Given a language of
infinite timed words ϕ ⊆ TΣω and a finite timed word ρ ∈ TΣ∗, the function
VT : 2TΣω → TΣ∗ → R2

≥0 evaluates to the verdict VT (ϕ)(ρ) = (Dρ
ϕ, D

ρ

ϕ
), where:

Dρ
ϕ = inf

{
τ(ρ′) : ρ′ ∈ TΣ∗ such that ∀µ ∈ TDΣω. ρ · ρ′ · µ ∈ ϕ

}
Dρ

ϕ
= inf

{
τ(ρ′) : ρ′ ∈ TΣ∗ such that ∀µ ∈ TDΣω. ρ · ρ′ · µ ̸∈ ϕ

}
where τ(ρ′) denotes the time duration of ρ′.

The intuition behind Definition 9 is illustrated in Figure 8. We note that
when V(ϕ)(ρ) = ⊤ then VT (ϕ)(ρ) = (0,+∞). Dually, when V(ϕ)(ρ) = ⊥ then
VT (ϕ)(ρ) = (+∞, 0). We note however, that the opposite implications do not
hold. As an example consider the property F≥5b and the finite timed word ρ =
(c, 6). Then clearly VT (ϕ)(ρ) = (0,+∞) but V(ϕ)(ρ) ̸= ⊤.

To make steps toward a time predicting monitoring algorithm, we assume
that the property ϕ (as well as ϕ) can be captured by a TBA A. During
monitoring, we constantly check whether the state estimate TA(ρ) of the cur-
rent prefix word ρ intersects the set of states with non-empty language, i.e.
Reach∞

A . Now RA = ReachA(Reach∞
A ) describes the set of states that can reach

a state with an empty language. By extending the TBA A with a fresh clock
z, the extended set Rz

A = ReachAz (Reach∞
Az ∧ (z = 0)) captures in a symbolic
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(a) State space of A (b) State space of A

Fig. 8: Illustration of the state spaces while monitoring given the inputs A and
A and a timed word ρ. This figure is a refinement of Figure 6. In particular
the states with a non-empty language, e.g. Reach∞

A , has been divided into two
subsets: the set of states that can reach outside Reach∞

A (darker grey indicating
larger infimum reachability time) and the states that cannot (darkest grey). The
black areas are the state-estimates after ρ, i.e. TA(ρ) and TA(ρ).

way the time required to reach a state with an empty language2. In particu-
lar dA(q, v) = inf{vz : (q, v, vz) ∈ Rz

A} is the infimum reachability time for a
state (q, v) ∈ RA. For S a set of states, we define dA(S) to be the supremum of
dA(q, v) over all (q, v) ∈ S. Now we claim the following Theorem, pointing to an
effective way of providing guaranteed minimum time predictions of positive and
negative verdicts during monitoring.

Theorem 4. Let ϕ ⊆ TΣω be a language of infinite timed words. Assume that
ϕ is accepted by a TBA Aϕ and the complement ϕ is accepted by a TBA Aϕ.
Then the following holds:

dAϕ
(TAϕ

(ρ)) ≤ Dρ
ϕ and dA

ϕ
(TA

ϕ
(ρ)) ≤ Dρ

ϕ

Moreover, if Aϕ (Aϕ) is deterministic the first (second) inequality is an equality.

9 Conclusion

In this work, we have revisited the online monitoring problem for timed proper-
ties. We presented an efficient online monitoring algorithm for languages of infi-
nite timed words. We require the language and its complement to be expressed
as TBAs, a requirement that is, for example, satisfied for languages specified in
the logic MITL. Hence our method is applicable in many realistic scenarios.

We showed how to account for time divergence which prior work did not read-
ily seem to support. We also introduced two extensions to our method: support
for time uncertainty in the time sequence observed by the monitor, and time
predictions that refine the unknown verdict. By supporting time uncertainty
2 Similar to a method in [12] for time-optimal strategies.
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in the observed input, we account for real-world systems where the real-valued
time-points of events can only be observed up to a given precision. This lim-
its the soundness of verdicts from monitors that support only concrete timed
traces. Time predictions refine the mostly unhelpful unknown verdict to provide
extra information on the possible time-to-failure of the monitored system. For
nondeterministic TBAs we show how to compute an under-approximation which
is exact in the case of deterministic automata. In the future, we will investigate
the existence of an exact algorithm for the general case.

While our work was designed to facilitate implementation, this has not yet
been completed. Our planned implementation will be distributed in the form of
a C++ library with facilities to read TBAs in the UPPAAL XML format [23]
that is output by tools like Casaal [24] and MightyL [9]. We also plan to integrate
the tool into UPPAAL SMC [14] to replace the current rewrite-based Weighted
MTL implementation [11].

Further improvements to our monitoring algorithm include improved support
for uncertainties in the input and additional analysis of timed properties. One
direction in which we plan to extend the work is to support unobservable symbols
in the monitor alphabet. This can be logically extended to consider arbitrary
mutations to an input sequence modeled in the form of a TA. We also plan to
provide a method to compute the monitorability of a timed property.
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