Towards a Logic for

Inferring Properties of Event Streams™*

Sean Kauffman', Rajeev Joshi?, and Klaus Havelund?

L University of Waterloo, Canada
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

Abstract. We outline the background, motivation, and requirements
of an approach to create abstractions of event streams, which are time-
tagged sequences of events generated by an executing software system.
Our work is motivated by the need to process event streams with millions
of events that are generated by a spacecraft, that must be processed
quickly after they are received on the ground. Our approach involves
building a tool that adds hierarchical labels to a received event stream.
The labels add contextual information to the event stream, and thus
make it easier to build tools for visualizing and analyzing telemetry. We
describe a notation for writing hierarchical labeling rules; the notation
is based on a modification of Allen Temporal Logic, augmented with
rule-definitions and features for referring to data in data parameterized
events. We illustrate our notation and its use with an example.

1 Introduction

The most broadly applied approach to ensure functional correctness of software
systems is testing. That is, executing the software in a finite number of scenar-
ios and verifying the correct behavior. Various techniques have been developed
to improve the testing experience, including Runtime Verification (RV). RV is
a method for verifying that a program execution satisfies a user-provided for-
mal specification. Such specifications are typically expressed in some form of
temporal logic, regular expressions, or state machines. Occasionally, but more
rarely, they are expressed as rule systems and grammars. RV usually results in a
binary decision (true/false) as to whether the execution trace satisfies the spec-
ification, although variations on this theme have been developed. Logics have,
furthermore, been developed which aggregate data as part of the verification [4,
3,2].

In this paper, we outline an approach to software comprehension. A user pro-
vides a specification that is used to annotate a given event stream with contex-
tual information that makes it easier to build tools for visualizing and analyzing
the trace. The proposed specification logic is a modification of Allen’s Temporal

* The research performed by the last two authors was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Logic (ATL) [1], well known from AI, which turns out to be suitable for express-
ing hierarchical specifications of spacecraft behavior. We have implemented our
ideas in a system named nfer (a tool for “telemetry inference”). The design
of this logic is driven by the challenges faced in operating spacecraft, where the
only knowledge ground personnel have of the remote behavior is from telemetry
sent down to Earth. The nfer system provides both a declarative notation that
allows engineers to write hierarchical specifications of spacecraft behavior, and
a tool that uses these specifications to automatically label a received telemetry
stream. The labels are used both in visualizing telemetry in real-time as it is re-
ceived, as well as for building tools that make it easier to query past telemetry.
The tool is being applied for analyzing telemetry received from the Curiosity
rover currently on Mars [6].

The work is a continuation and refinement of previous work described in [5].
Rosu and Bensalem [7] define a translation of a modified ATL to Linear Tempo-
ral Logic (LTL) for monitoring, realizing, however, that a specialized monitoring
algorithm is more efficient. Our work differs in a number of respects: (i) instead
of monitoring ATL relationships for verification, we generate a relationship hi-
erarchy for program understanding, (ii) we handle data parameterized intervals,
(iii) we allow any constraints on time and parameter values, not just the 13
ATL constraints, (iv) in their system, an interval is unique, while in nfer it
can occur multiple times. Our work has strong similarities to data-flow (data
streaming) languages. A very recent example is QRE [2], which is based on reg-
ular expressions, and offers a solution for computing numeric results from traces.
QRE allows the use of regular programming to break up the stream for modular
processing, but is limited in that the resulting sub-streams may only be used for
computing a single quantitative result, and only using a limited set of numeric
operations, such as sum, difference, minimum, maximum, and average, in order
to achieve linear time (in the length of the trace) performance. Our approach is
based on Allen logic, and instead of a numeric result produces a set of named
intervals, useful for visualization (and thereby systems comprehension). Further-
more, data arguments to intervals can be computed using arbitrary functions.

The remainder of the paper is organized as follows. Section 2 outlines the
background as well as requirements for this effort, including an example. Section
3 suggests a solution and uses it to formalize the provided example. Finally,
Section 4 concludes the paper.

2 Requirements

In this section we briefly outline the requirements to our specification language.
We first illustrate a concrete problem with an example. Subsequently we outline
the specific requirements.

2.1 Illustrating Example

Consider the trace shown in Figure 1(a), that we assume has been generated by
a spacecraft®. The trace consists of a sequence of events, or Event Verification
Records (EVRs), each with a name, and list of arguments, including a time
stamp. This sequence of 15 events is already too long for human comprehension,
even if we provide the following informal description of how to read the trace:

— A session interval consists of a boot interval followed by a window interval.

— A boot interval starts with a VERSION event, ends with a DEACTIVATE event,
and must contain a BOOT_COUNT event.

— A window interval starts with a prep interval, followed by an active interval,
followed by a cleanup interval, and must contain an ACTIVATE_SEQ event.

— A prep interval starts with a WINDOW_PREP event and ends with a DUR1 event.

— An active interval starts with a taskl interval, followed by a task2 interval,
followed by a task3 interval.

— A taskl interval starts with a DUR1 event and ends with a DUR2 event.

— A task2 interval starts with a DUR2 event and ends with a DUR3 event.

— A task$ interval starts with a DUR3 event and ends with a FINISHED event.

— A cleanup interval starts with a FINISHED event and ends with a CLEANUP
event.

Our objective is to formalize the above information in a specification, match
the specification against the trace, and convey the actual matches in a visually
appealing manner. We are not interested in whether the trace satisfies the above
information exactly, but rather to what extent it matches. The result could
for example be the visualization shown in Figure 1(b). As can be seen, the
visualization clearly shows how a session consists of a boot and a window, which
itself consist of a prep, active and cleanup, and where an active consists of the
three tasks executed in sequence.

SLEEP (07:12:02)

VERSION (09:23:10,10.2.1)
BOOT_COUNT (09:23:16,12)

REPORT (09:23:18)

DEACTIVATE (09:23:30)
WINDOW_PREP (09:29:59,782,25,2)
ACTIVATE_SEQ(09:59:12,2) | Session |
OK(10:04:59)
DURI1 (10:05:05)

RESET (10:05:06) [boot [AL |
DUR2 (10:05:21)
DUR3(10:07:03) | prep | active |cleanup|
STORING (10:16:48)
FINISHED (10:17:04)
taskl| taskz |task
(a) A trace of events (b) Visualization of the trace

Fig. 1. An event trace and its visualization

3 The trace is artificially constructed to have no resemblance to real artifacts.

2.2 Desired Features

The specification language should allow a user to:

1. label event relations in the trace, for example to define the label taskl to
represent an interval delimited by the events DUR1 and DUR2.

2. define higher-level labels as a composition of lower-level labels. For example,
a session is composed of a boot and a window in sequence.

3. refer to time stamps associated to events in the trace, as well as generate
and read start and end times of generated labels.

4. refer to other data associated with events, as well as generate and read data
of generated labels using arbitrary expressions. For example, a label can have
a datum value defined as the sum of two lower-level event data.

5. specify other relationships than one event/labeling occurs before another.
For example it should be possible to specify that one label contains another,
that two labels overlap, etc.

3 Outline of a Logic

Our logic is inspired by ATL [1], specifically its operators for expressing temporal
constraints on time intervals. In ATL, a time interval represents an action taking
place over a time period (e.g. “Drive”), or a system state over a time period (e.g.
“Overheated”). A time interval has a name, a start time, and an end time.

ATL offers 13 mutually exclusive binary relations. Examples are: Before(i, j)
which holds iff interval ¢ ends before interval j starts, and During(i,j) which
holds iff ¢ starts strictly after j starts and ends before or when j ends (or vice
versa). An ATL formula is a conjunction* of such relationships, for example,
Before(A, B) N Contains(B,C). A model is a set of intervals satisfying such a
conjunction of constraints. ATL is typically used for generating a model (plan)
from a formula (planning), but can also be used for checking a model against a
formula, as described in [7].

Our objective is different from planning and verification. Given a trace, we
want to generate a model (a set of intervals), guided by a specification that we
provide, that represents a layered view of the trace. Let an interval be defined
as a 4-tuple (n,t1,t2,m) consisting of a name 7, and a start time t;, an end
time to, and a map m : Id — V from identifiers to values, the arguments of the
interval. The input to our system is a trace o: a sequence of named events of the
form n(t, m) consisting of a name 7, a unique time stamp ¢, and a map m (the
arguments to the event). The trace is converted into an initial model, which is
the set {(n,t,t,m) | N(t,m) € o}. The specification defining the transformation
of this initial model is a set of rules of the form:

n=mn(mi) ® nz(mz) if C map M

4 A limited form of disjunction is also allowed but not described here.

Operator & Name Explanation
A; A before B A ends before B starts
A:B A meet B A ends where B starts
ACB A during B all of A occurs during B
A =B |A coincide B| A and B occur at the exact same time
AF B A start B A starts at the same time as B
A-4B A finish B A finishes at the same time as B
A+ B A join B an A and a B with no constraint
A|B A overlap B A and B overlap in time
ANB A slice B A and B overlap in time
and only overlap is returned

Table 1. nfer operators

The rule states that: if there are two intervals named 7; respectively 7y already
generated, with maps specified by m, and ms respectively, that are related time-
wise with the temporal operator @, and if the condition C' holds on the maps of
the respective intervals (true if left out in abbreviated form)®, then an interval
named 7 is generated, with the map described by the map expression M (the
empty map if left out in abbreviated form). The operators are those presented
informally in Table 1, which are inspired by ATL, although not identical, since
our needs are slightly different. Each operator on two intervals A and B returns
an interval that time wise spans both intervals in their entirety (the maximal
view), except for the last slice operator A M B, which returns only the interval
(slice) which A and B have in common (the minimal view).

As convenient syntax we allow expressions containing several operators on
the right hand side of a rule, but such derived rules map to the simple form
above. The specification of our trace abstraction outlined in Section 2 is shown
in Figure 2 (with a condition and map functions added for illustration). A term
such as BOOT_-COUNT(2 : count) means matching a BOOT_COUNT event
where the second map argument is bound to the free variable count, and the
expression m | {seq : x} is the map m overridden by seq being mapped to z.

4 Conclusion

We have introduced the problem of inferring a model from an event stream,
guided by a formal specification, for the purpose of system comprehension.
We have outlined a rule-based logic, nfer, influenced by Allen Temporal Logic
(ATL), for writing specifications. ATL itself is an attractive logic due to its sim-
plicity, as well as naturalness for visualization, and is normally used for planning
purposes. nfer adds rule-definitions as well as data parameterization to a vari-
ant of this logical system. A prototype of nfer has been implemented in Scala as

5 In the fully generic form the user can define his/her own operators as arbitrary
predicates on time stamps.

session <— boot ; window .

boot <~ VERSION ; BOOT_-COUNT(2 : count) ; DEACTIVATE
if count > 10 map {boot_count : count} .

window <~ ACTIVATE_SEQ(2 : x) C(prep(m) ; active ; cleanup)
map m | {seq : x} .

prep < WINDOW_PREP(3 :wi, 4 : ty) ; DUR,4
map {wid : wi, type : ty} .

active <« tasky; tasks; tasks.
taskl% DURl, DURQ

tasko«— DURQ; DUR3

task3<— DURg; FINISHED .

cleanup < FINISHED ; CLEANUP .

Fig. 2. Example specification

an internal DSL (API), and is built on a publish and subscribe framework, for
processing telemetry data from the Mars Curiosity rover. Future work includes
refining the implementation, including optimizing time and space; improving the
internal rule DSL; creating an external DSL; and allowing rules to be written in
other languages, such as Python, commonly used by flight mission engineers.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832-843 (1983)

2. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Programming Languages and Systems - 25th Eu-
ropean Symposium on Programming, ESOP 2016, Eindhoven, The Netherlands.
LNCS, vol. 9632, pp. 15-40. Springer (April 2016)

3. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monpoly: Monitoring usage-
control policies. In: Runtime Verification. pp. 360-364. Springer (2011)

4. Finkbeiner, B., Manna, Z., Sipma, H.B.: Deductive verification of modular systems.
In: Compositionality: The Significant Difference, pp. 239-275. Springer (1998)

5. Havelund, K., Joshi, R.: Comprehension of spacecraft telemetry using hierarchical
specifications of behavior. In: 16th International Conference on Formal Engineer-
ing Methods (ICFEM), Luxembourg. LNCS, vol. 8829, pp. 187-202. Springer (Nov
2014)

6. Mars Science Laboratory (MSL) mission website: http://mars.jpl.nasa.gov/msl.

7. Rosu, G., Bensalem, S.: Allen linear (interval) temporal logic - translation to LTL
and monitor synthesis. In: CAV (2006)

