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Abstract. We present a Python library for trace analysis named Py-
Contract. PyContract is a shallow internal DSL, in contrast to many
trace analysis tools that implement external or deep internal DSLs. The
library has been used in a project for analysis of logs from NASA’s Eu-
ropa Clipper mission. We describe our design choices, explain the API
via examples, and present an experiment comparing PyContract against
other state-of-the-art tools from the research and industrial communities.

1 Introduction

Runtime Verification (RV) is an approach to checking that a system under ex-
ecution does the right thing, complementary to testing and static verification.
Numerous RV systems have been developed over time. Many of these systems of-
fer so-called external domain-specific languages (DSLs) [19, 2, 9, 4, 7, 22, 5, 18, 11,
1]. These parse a specification and synthesize a runtime monitor from the spec-
ification. Internal (or embedded) DSLs, on the other hand, extend an existing
host programming language, usually as a library.

There are two kinds of internal DSLs: deep and shallow [14]. In a deep internal
DSL, data structures in the host language are used to represent DSL constructs
in an explicit manner, e.g., as an Abstract Syntax Tree (AST), which can then
be processed by writing either an interpreter or a compiler for execution. Some
examples are [15, 26]. A shallow internal DSL includes the constructs of the
host language as part of the DSL, using the host language’s native runtime
system to execute them. This is how most programming language libraries are
implemented. Shallow Scala-internal DSLs developed by the authors, and their
use, are described in [3, 16, 17, 20].

In this work we present a shallow Python-internal DSL for RV. Our motiva-
tion stems from our experiences in infusing monitoring technology into practice.
The main reason for implementing a monitoring library in Python is the lan-
guage’s popularity [28]. The most recent version of Python provides pattern
matching, which we demonstrate is useful for writing monitors. We believe that
an internal DSL increases adoption. For example, in our experience with applying
the CommaSuite tool [8] in industrial contexts, we have observed that having to
learn a new specification language is sometimes experienced by potential users as
a barrier to using the tool. An internal DSL is “just” another library in a famil-
iar language, and modern programmers commonly use many libraries [24]. They



2

can continue to use their favorite development tools (such as IDEs) and other
libraries for the host language. The chance of adoption is furthermore increased
due to the fact that shallow internal DSLs offer full expressiveness, since the host
language can be leveraged for complex calculations. This is an essential design
point to expand PyContract’s possible uses. This has been demonstrated by its
application in the analysis of telemetry logs from testing the Europa Clipper
mission [12] flight computer.

Furthermore, design and implementation are much easier for internal DSLs
than for external DSLs, because the syntax and semantics of the host language
are used. A noteworthy aspect of our solution is its small implementation. For the
same reason, maintenance requires less effort. The effort to respond to feature
requests can be reduced due to the availability of language constructs in the host
language. E.g., the development of the external CommaSuite DSL has involved
regularly occurring user requests for more “richness” in the language such as dic-
tionaries (hash maps) as an additional data type and a notation for namespaces.
In an external DSL, adding such features is made more challenging by the need
to handle all aspects of the language interpretation. A potential disadvantage
of shallow internal DSLs (when compared to external DSLs and deep internal
DSLs) is analyzability. However, Python supports powerful meta-programming
features allowing a program to inspect its own AST.

We support monitoring of events that carry data, allowing specification of
the relationship between data in events arriving at different time points (i.e.
we support first-order temporal properties). PyContract implements a form of
slicing (indexing) [22, 26] for optimizing monitoring events with data, limiting
the search when an event is submitted to the monitor. We use an automaton
flavored language rather than temporal logic for the specification of monitors as
we find automata to be more flexible. Our DSL resembles a cross between Ex-
tended Finite State Machines (EFSMs) [6], such as Quantified Event Automata
(QEA) [26], and rule-based programming, such as RuleR [4]. It most closely
resembles the Scala DSL Daut [16, 10].

We support two flavors of states. In next-states, the next event must match
a transition. This allows the definition of state machines as found in standard
textbooks on finite automata [27]. In skip-states, events may be skipped until a
transition matches. This can be used for state machines in the style of SysML [29]
and UML [31]. We support skip-states as the default and treat all states as
implicitly accepting unless marked as rejecting. In our experience, this provides
a flexible way to write concise monitors.

We support visualization of monitors to improve user comprehension. Visual-
ization is an efficient way to communicate the meaning of a specification [30]. We
use a format based on standard EFSM displays that leverages user familiarity
with such diagrams.
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2 The PyContract Library

PyContract is an internal Python DSL for writing event monitors. It is inspired
by rule-based programming [4, 17] in that the memory of a monitor is a set
of facts, where a fact is a named data record. Furthermore, facts, like states
in state machines, can have transitions which, upon triggering, can generate
other facts. As in EFSMs one can also define variables, local to a monitor, to
which the transitions can refer in conditions and in actions. Finally, since the
DSL is a Python library, one can write arbitrary Python code as part of the
monitors. PyContract is inspired by the Scala DSL Daut [16, 10] and is developed
for Python 3.10 that supports pattern matching [25]. We use pattern matching
extensively for defining transition functions. The general approach is to define a
monitor as a sub-class of the Monitor class, create an instance of it, and then feed
it with events. Events are fed, one by one, using the evaluate(event: Event)
method and, in the case of a finite sequence of observations, a call of the end()
method signals the monitor that the sequence has ended, at which point any
outstanding obligations that have not been satisfied (expected events that did
not occur) will be reported as errors. PyContract is available under the Apache
2.0 open-source license at [23]. In the following we shall illustrate how to write
monitors with two examples.

2.1 Example 1

Consider a sequence of events, where each event indicates the acquisition or the
release of a lock by a thread. PyContract can monitor events of any kind: num-
bers, strings, dictionaries (maps), objects of user defined classes, etc. We shall
here assume the definition of two such event classes Acquire and Release defined
as data classes1, each taking a thread and a lock as argument, allowing the con-
struction of objects such as Acquire(thread, lock) and Release(thread, lock),
and performing pattern matching over these.

The monitor we shall present is a “kitchen sink” example of features, and
implements property P1, consisting of five sub-properties:

P1.1 A thread acquiring a lock must eventually release it.
P1.2 While a lock is acquired by a thread it cannot be acquired by any thread.
P1.3 A thread can only release a lock if it has acquired it, and not yet released it.
P1.4 A maximum of N locks can be acquired at any point in time, where N is a

monitor parameter.
P1.5 An acquired lock should never later be freed as memory.

The monitor is shown in Figure 1, and is defined as the class M1 extending
the Monitor class. The monitor is parameterized with the maximal number of
locks, limit (line 2) that can be acquired at any point in time. A variable,
count (line 4), is introduced to count the number of active acquisitions. The
1 A data class is a class decorated with @dataclass, which allows to perform pattern
matching over objects of the class, including their parameters.
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body of M1 defines a transition function (lines 7-20), and two states: DoRelease
(lines 22-33), parameterized with a thread id and a lock id; and DoNotFree (lines
35-42), parameterized with a lock id. The PyContract @data decorator implies
@dataclass and introduces a hash-function to store states in hash sets. These
two states themselves each contain a transition function. A transition function
takes as argument an event and returns a list of states (or None if not applicable).

The outermost transition function (lines 7-20) is always enabled, and can be
perceived as representing the temporal logic box operator �. This outermost
transition function, when applied to an event, will match it against two pat-
terns: Acquire(thread, lock) and Release(thread, lock), where thread and
lock will be bound to the actual values of the incoming event. The transition
corresponding to an acquisition (lines 9-17) is conditioned on the non-existence
of a DoRelease-state with the same lock (lines 10-11), representing the fact that
the lock has already been acquired by some thread (it does not matter which).
If the number of active monitors is less than the limit, count is bumped up and
a list of two states (lines 14-15) is returned, each of which is then added to the
memory of the monitor. The transition corresponding to a release (lines 18-20)
returns an error if no DoRelease(thread, lock) exists with the same thread and
lock (line 19). Note how we can use a fact as a Boolean expression if all argu-
ments are known, in contrast to the more verbose call of the exists predicate
in lines 10-11.

An event that does not match any of the case entries is considered to not
match any transition. How this is treated depends on the kind of state. Since
PyContract’s default is to use skip-states (in contrast to next-states), in this
case it means that the event is skipped and the state stays active in memory.

The DoRelease state is a HotState, meaning that at the end of a run, an error
is reported if such a state is active. In case of an acquisition, a match occurs if
the second lock argument is the same as self.lock (the underscore ‘_’ pattern
matches any value). In general, any dotted name in a pattern indicates that the
incoming value has to match this exact value. In case of a match, two states are
returned (line 30): an error state, and the self state, keeping it active in the
monitor. In case of a release by the thread that holds the lock, the counter is
decreased and the state ok is returned, corresponding to removing the DoRelease
state. The DoNotFree state is a normal State (line 36), effectively a skip state
that forever monitors that the lock is not freed with a Free event.

2.2 Example 2

Consider the property P2 consisting of just the first three sub-properties P1.1,
P1.2, and P1.3 of P1. A consequence of this property is that acquisitions and
releases of a lock must strictly alternate. The monitor M2 in Figure 2 monitors
this property. In monitor M1, Figure 1, line 19, we used a memory query to check
that a lock is only released by the thread that acquired it. In monitor M2 we
instead use indexing (slicing) and next-states, which results in a more efficient
and more succinct monitor. We shall slice on locks, meaning that for each lock
encountered in the trace, PyContract will, in a hash map, map it to a monitor
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1 class M1(Monitor ):
2 def __init__(self , limit: int):
3 super (). __init__ ()
4 self.count: int = 0
5 self.limit = limit
6

7 def transition(self , event):
8 match event:
9 case Acquire(thread , lock)

10 if not self.exists(lambda s:
11 isinstance(s, M1.DoRelease) and s.lock==lock):
12 if self.monitor.count < self.limit:
13 self.monitor.count += 1
14 return [M1.DoRelease(thread , lock),
15 M1.DoNotFree(lock)]
16 else:
17 return error(f’limit␣reached ’)
18 case Release(thread , lock)
19 if not M1.DoRelease(thread , lock):
20 return error(f’releasing␣un-acquired␣lock’)
21

22 @data
23 class DoRelease(HotState ):
24 thread: str
25 lock: int
26

27 def transition(self , event):
28 match event:
29 case Acquire(_, self.lock):
30 return [error(’already␣acquired ’), self]
31 case Release(self.thread , self.lock):
32 self.monitor.count -= 1
33 return ok
34

35 @data
36 class DoNotFree(State):
37 lock: int
38

39 def transition(self , event):
40 match event:
41 case Free(self.lock):
42 return error(f’Lock␣freed’)

Fig. 1. The monitor M1

memory (set of states) for only that lock. All events concerning that lock are
sent to only the states in that lock-specific memory. This yields two advantages:
first, we do not need to search all states when an event arrives, we can just look
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up and search the states for the relevant lock, and second, since only events
concerning that lock are sent to that lock-specific memory, we can write our
monitor more succinctly using next-states. The Monitor class defines a method:

def key(self , event) -> Optional[object ]:
return None

which is called on each event to return its slicing index (None is the default,
meaning no slicing is performed). The user can override this method to indicate
which events should be sliced upon. Figure 2 (lines 2-5) shows such an overriding
of this method, defining the lock to be the slicing index (key) for Acquire and
Release events. The second step is to define our states as next-states (lines 8
and 15). The semantics of these is that it is an error if the next observed event
(sent to that state) does not match any of its transitions. A NextState is an
acceptance state while a HotNextState is not.

1 class M2(Monitor ):
2 def key(self , event) -> Optional[object ]:
3 match event:
4 case Acquire(_, lock) | Release(_, lock):
5 return lock
6

7 @initial
8 class Idle(NextState ):
9 def transition(self , event):

10 match event:
11 case Acquire(thread , lock):
12 return M2.DoRelease(thread , lock)
13

14 @data
15 class DoRelease(HotNextState ):
16 thread: str
17 lock: int
18

19 def transition(self , event):
20 match event:
21 case Release(self.thread , self.lock):
22 return M2.Idle()

Fig. 2. The monitor M2

Slicing is used in efficient runtime verification tools such as MOP [22] and
QEA [26]. In PyContract the slicing criterion is, as just shown, user defined (by
overriding method key), which allows for a more expressive form of indexing
than in e.g. MOP where all data parameters are used for indexing. QEA allows
for more flexible slicing criteria. Slicing is used in MOP and QEA to express past
time properties, as in this example (a release must be preceded by an acquisition).
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3 Comparison with Other Frameworks

Using M2 from Figure 2, we compared PyContract against three other tools: the
research tools Daut [16] and QEA [26], and the industrial tool CommaSuite [8,
21], inspired by the RV tool RuleR [21]. At [13], the implementations of M2 in
those other tools are available. We encourage the reader to compare these to the
PyContract code from Figure 2.

We compared the performance of PyContract monitoring with the other tools
to investigate whether it is fast enough for practical use. We ran three experi-
ments with the four tools, using the monitors for M2. The first experiment simu-
lates one thread acquiring and then immediately releasing one lock, many times.
In the second experiment, one thread acquires many locks at once before releas-
ing them. The third experiment is the same as the second except that each lock
is acquired and released by a different thread. For each experiment, we recorded
the processing times for traces with 500,000; 1,000,000; 2,000,000; and 4,000,000
events.

Alternating Acquire/Release Acquire all, then Release One thread per lock
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Fig. 3. Benchmark results comparing PyContract with three other tools.

Figure 3 shows the results running the experiment on an Intel Xeon E5-2680
frequency-locked to 2.40GHz. We ran PyContract 1.0.1 on Python 3.10.4 and
QEA 1.0, Daut 0.1, and CommaSuite 1.1.0 on the Oracle JVM 11.0.12 running
on 64-bit Linux 4.15. The graph shows the number of events in the trace (x-axis)
against the time the tool took to complete offline analysis. Each point represents
the mean of at least six runs. PyContract, Daut, and CommaSuite read events
from JSONL files while QEA read them from a special kind of CSV file that this
tool supports. The experiments and raw results are available at [13].

In the experiment, it is clear that QEA and Daut are the fastest tools, but
PyContract remains usable with processing times under 100 seconds for four mil-
lion events. Additionally, PyContract has similar results for all three experiments
while QEA and CommaSuite are noticeably slower when many locks are acquired
at once. For example, QEA with 4M events completes in about 8s when only one
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lock is acquired at once but takes about 33s when 2M locks are acquired at once
by 2M separate threads. One possible explanation of the superior performance
of Daut over PyContract, in spite of their similar implementation, may be the
superiority of the JVM and its just-in-time compilation compared to Python’s
runtime system.

In the cases where no CommaSuite results are reported it is because the tests
took more than 320 seconds. The CommaSuite developers pointed out several
potential reasons for the observed performance. Most importantly, performance
has never been a main requirement2. CommaSuite models may be nondeter-
ministic, which requires additional bookkeeping during monitoring. This feature
cannot be disabled. Additional data is also collected to provide e.g. coverage
information after monitoring; again this is not optional.

4 Conclusion

We have presented a shallow internal DSL (library) for trace analysis in Python,
and argued that such DSLs have important advantages. These advantages in-
clude ease of infusion into projects due to a flattened learning curve, taking
advantage of development tools (such as IDEs) and libraries for the program-
ming language, expressiveness, and fast development and reduced maintenance
making it easier to adapt to feature requests. Since Python is one of the most
popular programming languages, we believe that a Python library for monitoring
is valuable. We compared the performance of PyContract to two research tools
and one industrial tool for RV, all three JVM-based. PyContract performed rea-
sonably well compared to the two research tools, considering that the JVM is a
high performance platform compared to Python’s runtime system, and PyCon-
tract convincingly outperformed the industrial tool. The longer term objective of
the library is to support activities that normally are associated with monitoring,
providing a “Swiss pocket knife” for monitoring. This includes, as already men-
tioned, various forms of visualization, but also trace mining. Since PyContract
is embedded in Python, allowing a mix of monitoring DSL and free style Python
code, the door is open to experiment with the connection between runtime ver-
ification and data analysis. This line of work has already been pursued on the
application to the Europa Clipper project, and we intend to pursue it further.
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