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Abstract. Nfer is a Runtime Verification language for the analysis of
event traces that applies rules to create hierarchies of time intervals.
This work examines the complexity of the evaluation and satisfiability
problems for the data-free fragment of nfer. The evaluation problem asks
whether a given interval is generated by applying rules to a known input,
while the satisfiability problem asks if an input exists that will generate
a given interval.
By excluding data from the language, we obtain polynomial-time al-
gorithms for the evaluation problem and for satisfiability when only
considering inclusive rules. Furthermore, we show decidability for the
satisfiability problem for cycle-free specifications and undecidability for
satisfiability of full data-free nfer.

Keywords: Interval Logic · Complexity · Runtime Verification

1 Introduction

Nfer is an interval logic for analyzing and comprehending event traces that has
been used in a wide range of applications, from anomaly detection in autonomous
vehicles [14] to spacecraft telemetry analysis [17]. However, its high complexity
demands that users restrict the features they incorporate into their applications
to ensure tractability. Despite this, no work exists that examines the runtime
complexity of nfer without data; an obvious restraint on the power of the lan-
guage that more closely resembles propositional interval logics like Halpern and
Shoham’s logic of intervals (HS) and Duration Calculus [26]. These languages
still tend to be undecidable in the general case, however, so it is unclear if this
restriction on nfer helps with tractability. In this paper, we show that evalua-
tion of the data-free variant of nfer is tractable and, futhermore, satisfiability
for this variant is tractable with additional restrictions.

Nfer was developed by scientists from NASA’s Jet Propulsion Laboratory
(JPL) in collaboration with other researchers to analyze event traces from remote
systems like spacecraft [18, 16, 17]. In nfer, specifications consist of rules that
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describe and label relationships between time periods called intervals. Applying
nfer rules to an event trace yields a hierarchy of these intervals that is easier
for humans and machines to comprehend than the raw events.

Nfer typically operates on intervals with data, but here we define a data-
free fragment of the language. Data-free nfer is expressive enough for many use
cases, having appeared, for example, to analyze the Sequential Sense-Process-
Send (SSPS) dataset [17]. Data-free nfer is also the target for an algorithm to
mine rules from real-time embedded systems [15].

Recent work analyzing the evaluation complexity of nfer has shown that it is
undecidable for the full language, but with various decidable fragments [20, 21].
These fragments mostly remain intractable, however, with PTime complexity
only possible by employing a meta-constraint on the size of the results that may
not be practical in many cases. Those works did not examine data-free nfer as
a fragment, however, despite it being an obvious restriction with precedent in
the literature. A major advantage of restricting nfer to the data-free fragment
is that the satisfiability problem becomes interesting. With data, it is trivial to
show that satisfiability for nfer is undecidable. This follows from the results
in [21] where nfer is shown to have undecidable evaluation. One can encode a
Turing machine using nfer rules and satisfiability asks if there is an initial tape
such that the machine terminates.

Without data, however, it is much less obvious if satisfiability is undecidable.
In fact, we show that satisfiability for the full data-free nfer language is still
undecidable, but we achieve decidability by restricting to a cycle-free or inclusive-
only fragment, the latter of which we demonstrate is decidable in PTime. That
the satisfiability of inclusive, data-free nfer is decidable in PTime has exciting
implications for practitioners, since these checks can be implemented in event-
trace analysis tools [13]. We also show that the evaluation problem for data-free
nfer is in PTime without any artificial restrictions on the size of the result from
meta-constraints.

All proofs omitted due to space restrictions can be found in [19].

Related Work Other works have examined the complexity of interval-based log-
ics. Halpern et al. introduced an interval temporal logic and examined its de-
cidability in [11]. Chaochen et al. found decidable and undecidable fragments of
an extension of that work, Duration Calculus [7], over both discrete and dense
time [6]. Bolander et al. later introduced Hybrid Duration Calculus (HDC) that
added the ability to name an interval and refer to it in a formula [4]. They
showed that HDC can express Allen’s relations and is decidable over discrete
and dense time domains with non-elementary complexity.

Other works have investigated the complexity of HS [12], a modal logic based
on Allen’s Temporal Logic (ATL). Montanari et al. examined the satisfiability
problem for the subset of HS over the natural numbers with only begins/begun
by and meets operators and proved it to be ExpSpace-complete [23]. The same
authors later proved that adding the met by operator increases the complexity of
the language to be decidable only over finite total orders [22]. Aceto et al. later
examined the expressive power of all fragments of HS over total orders [1].



2 Data-Free Nfer

We denote the set of nonnegative integers as N. The set of Booleans is given
as B = {true, false}. We fix a finite alphabet Σ of event identifiers and a finite
alphabet I of interval identifiers such that Σ ⊆ I. A word is a sequence of
identifiers σ = σ0σ1 · · ·σ|σ|−1 where σi ∈ Σ. Given a word σ, we define the
non-empty subsequence σ[s,e] = σs · · ·σe, where 0 ≤ s ≤ e ≤ |σ| − 1.

An event represents a named state change in an observed system. An event
is a pair (η, t) where η ∈ Σ is its identifier and t ∈ N is the timestamp when
it occurred. The set of all events is E = Σ × N. A trace is a sequence of events
τ = (η0, t0)(η1, t1) · · · (ηn−1, tn−1) where n = |τ | and ti ≤ tj for all i < j.

Intervals represent a named period of state in an observed system. An interval
is a triple (η, s, e) where η ∈ I is its identifier, and s, e ∈ N are the starting and
ending timestamps where s ≤ e. We denote the set of all intervals by I. A set
of intervals is called a pool and the set of all pools is P = 2I. We say that an
interval i = (η, s, e) is labeled by η and define the accessor functions id(i) = η,
start(i) = s, and end(i) = e. An interval of duration zero is an atomic interval.

Syntax. The data-free nfer syntax consists of rules. There are two forms of rules:
inclusive and exclusive. Inclusive rules test for the existence of two intervals
matching a temporal constraint. Exclusive rules test for the existence of one
interval and the absence of another interval matching a temporal constraint.
When such a pair is found, a new interval is produced with an identifier specified
by the rule and timestamps taken from the matched intervals. We define the
syntax of these rules as follows:

– Inclusive rules have the form η ← η1 ⊕ η2 and
– exclusive rules have the form η ← η1 unless⊖ η2

where η, η1, η2 ∈ I are identifiers, ⊕ ∈ {before,meet,during, coincide, start,
finish,overlap, slice} is a clock predicate on three intervals (one for each of
η, η1, and η2), and ⊖ ∈ {after, follow, contain} is a clock predicate on two
intervals (one for each of η1 and η2). For a rule η ← η1⊕ η2 or η ← η1unless⊖ η2
we say that η appears on the left-hand and the ηi appear on the right-hand side.

Semantics. The semantics of the nfer language is defined in three steps: the
semantics R of individual rules on pools, the semantics S of a specification (a
list of rules) on pools, and the semantics T of a specification on traces of events.

We first define the semantics of inclusive rules with the interpretation func-
tion R. Let ∆ be the set of all rules. Semantic functions are defined using the
brackets [[ _]] around syntax being given semantics.



R [[ _]] : ∆ → P → P
R [[ η ← η1 ⊕ η2 ]] π =
{ i ∈ I : i1,i2 ∈ π . id(i) = η ∧ id(i1) = η1∧ id(i2) = η2∧⊕(i ,i1,i2) }

In the definition, an interval i is a member of the produced pool when two existing
intervals in π match the identifiers η1 and η2 and the temporal constraint ⊕. The
identifier of i is given in the rule and ⊕ defines its start and end timestamps.

The clock predicates referenced by ⊕ are shown in Table 1. These relate two
intervals using the familiar ATL temporal operators [2] and also specify the start
and end timestamps of the produced intervals. For the example before(i, i1, i2),
i1 and i2 are matched when i1 ends before i2 begins. The generated interval i
has start and end timestamps inherited from the intervals i1 and i2, i.e., no new
timestamps are generated by applying before(i, i1, i2). This is true for all other
rules as well.
We now define the semantics of exclusive rules with the function R.
R [[ η ← η1 unless ⊖ η2 ]] π =

{ i ∈ I : i1∈ π . id(i) = η ∧ id(i1) = η1∧
start(i) = start(i1) ∧ end(i) = end(i1) ∧

¬ ( ∃ i2∈ π . i2 ̸= i1 ∧ id(i2) = η2∧⊖(i1,i2) ) }
Like with inclusive rules, exclusive rules match intervals in the input pool π

to produce a pool of new intervals. The difference is that exclusive rules produce
new intervals where one existing interval in π matches the identifier η1 and no
intervals exist in π that match the identifier η2 such that the clock predicate ⊖
holds for the η1-labeled and the η2-labeled interval.

The three possibilities referenced by ⊖ are shown in Table 2. These clock
predicates relate two intervals using familiar ATL temporal operators while the
timestamps of the produced interval are copied from the included interval rather
than being defined by the clock predicate. For the example after(i1, i2), i1 and
i2 would be matched (if i2 existed) if i1 begins after i2 ends, and this match
would result in no interval being produced. If such an interval i2 is absent, an
interval is produced with timestamps matching i1.

Table 1. Formal definition of nfer clock predicates for inclusive rules

⊕ Constraints on i, i1, and i2

before end(i1) < start(i2) ∧ start(i) = start(i1) ∧ end(i) = end(i2)
meet end(i1) = start(i2) ∧ start(i) = start(i1) ∧ end(i) = end(i2)

during start(i2) = start(i) ≤ start(i1) ∧ end(i1) ≤ end(i2) = end(i)
coincide start(i1) = start(i2) = start(i) ∧ end(i1) = end(i2) = end(i)

start start(i1) = start(i2) = start(i) ∧ end(i) = max(end(i1), end(i2))
finish end(i) = end(i1) = end(i2) ∧ start(i) = min(start(i1), start(i2))

overlap start(i1) < end(i2) ∧ start(i2) < end(i1) ∧
start(i) = min(start(i1), start(i2)) ∧ end(i) = max(end(i1), end(i2))

slice start(i1) < end(i2) ∧ start(i2) < end(i1) ∧
start(i) = max(start(i1), start(i2)) ∧ end(i) = min(end(i1), end(i2))



Table 2. Formal definition of nfer clock predicates for exclusive rules

⊖ Constraints on i1 and i2

after start(i1) > end(i2)
follow start(i1) = end(i2)

contain start(i2) ≥ start(i1) ∧ end(i2) ≤ end(i1)

The interpretation function S defines the semantics of a finite list of rules,
called a specification. Given a specification δ1 · · · δn ∈ ∆∗ and a pool π ∈ P,
S[[_]] recursively applies R[[_]] to the rules in order, passing each instance the
union of π with the intervals returned by already completed calls.

S [[_]] : ∆∗ → P→ P

S [[ δ1 · · · δn ]] π =
{
S [[ δ2 · · · δn ]] (π ∪ R [[ δ1 ]] π ) if n > 0
π otherwise

An nfer specification D ∈ ∆∗ forms a directed graph G(D) with vertices
for the rules in D connected by edges representing identifier dependencies. An
edge exists in G(D) from δ to δ′ iff there is an identifier η that appears on the
left-hand side of δ and the right-hand side of δ′. We say that D contains a cycle
if G(D) contains one; otherwise D is cycle-free.

The rules in a cycle in an nfer specification must be iteratively evaluated
until a fixed point is reached. As intervals may never be destroyed by rule eval-
uation, inclusive rules may be repeatedly evaluated, safely. However, exclusive
rules may not be evaluated until the intervals on which they depend are known
to be present or absent.

For example, suppose a specification with the two rules δ1 = c← ameet b
and δ2 = a ← cmeet b. Given π = {(a, 0, 1), (b, 1, 2), (b, 2, 3), (b, 3, 4), (d, 4, 5)},
we have R[[δ1]]π = {(c, 0, 2)} and R[[δ2]](π∪R[[δ1]]π) = {(a, 0, 3)}. The rules must
be applied a second time to reach a fixed point that includes the interval (c, 0, 4).
Now consider the consequences if the specification also contained the exclusive
rule δ3 = b ← d unless follow c. After the first evaluation, (c, 0, 4) is not yet
produced, so evaluating δ3 would generate (b, 4, 5), an incorrect result. As such,
exclusive rules may not appear in cycles but may appear in a specification that
contains cycles among inclusive rules.

To find the cycles in a specification, we compute the strongly-connected com-
ponents of the directed graph G(D) formed by the rules in D. Each strongly
connected component represents either a cycle or an individual rule outside of
a cycle. We then sort the components in topological order and iterate over each
component until a fixed point is reached.

The interpretation function T [[_]] defines the semantics of a specification
applied to a trace of events. To ensure consistency with prior work and to simplify
our presentation, we overload T [[_]] to operate on an event trace τ ∈ E∗ by first
converting τ to the pool {init(e) : e is an element of τ} where init(η, t) = (η, t, t).



T [[ _]] : ∆∗→ P → P
T [[ δ1 · · · δn ]] π = πℓ+1,1. π1,1= π ∧

D = SCC(δ1 · · · δn) ∧ (D1 · · ·Dℓ) = topsort(D) .
πi+1,1=

⋃
j>0πi,j. πi,j+1= S [[ Di ]] (πi,j)

where SCC(δ1 · · · δn) is the set D of strongly connected components of the graph
G(δ1 · · · δn) and topsort(D) is a topological sort of these components.

3 Satisfiability

We are interested in the existential nfer satisfiability problem: Given a speci-
fication D, a set of identifiers Σ, and a target identifier ηT , is there an input
trace of events τ ∈ E+ with identifiers in Σ such that an ηT -labeled interval is
in T [[D]] τ? The nfer satisfiability problem is interesting in part because of the
restriction of input identifiers to Σ ⊆ I. If ηT ∈ Σ, then any specification is
trivially satisfiable. When ηT ̸∈ Σ, however, then a ηT -labeled interval must be
derived. This problem is non-trivial and, as we shall see, undecidable in general.

To see how data-free nfer specifications may be satisfiable or not, consider
the following two example specifications for the target identifier ηT and input
identifiers Σ = {a, b}:

Dsat =


A← a before b
B ← Ameet b
ηT ← A overlap B

Dunsat =


A← b before X
B ← ameet b
ηT ← a overlap B

A satisfying event trace for Dsat is τ1 = (a, 1), (b, 2), since T [[Dsat]] τ1 =
{(a, 1, 1), (b, 2, 2), (A, 1, 2), (B, 1, 2), (ηT , 1, 2)}. For Dunsat, no ηT -labeled interval
can be produced because overlap requires one of the two matched intervals to
have positive duration: for an interval i, end(i) − start(i) > 0. Since a-labeled
intervals must be initial, they are atomic (zero duration). That leaves B-labeled
intervals produced by another rule. The rule that produces B-labeled intervals,
however, only matches initial intervals with the same timestamps. As such, any
B-labeled interval will also have zero duration, and the overlap rule will never
be matched. Finally, the before rule can never be applied, as no X-labeled
interval can be generated.

3.1 Data-Free nfer Satisfiability is Undecidable

In this section, we show the undecidability of the data-free nfer satisfiability
problem by a reduction from the emptiness problem for the intersection of two
Context-Free Grammars (CFGs). The undecidability result relies on the recur-
sive nature of nfer, i.e., an η-labeled interval can be produced from another
η-labeled interval, and on its negation capabilities, i.e., via exclusive rules.

Theorem 1. The data-free nfer satisfiability problem is undecidable.



We now show how to simulate a CFG G with data-free nfer rules with a
designated identifier ηG so that a word w is accepted by the CFG iff applying the
rules to events that correspond to w generates an interval over the same period
with identifier ηG. Then the intersection of two CFGs G1 and G2 is nonempty
if and only if applying the corresponding rules generates, for some sequence of
events corresponding to a word, two intervals with the same starting and ending
timestamps, one with identifier ηG1 and one with ηG2 . The existence of two such
intervals can again be captured by a data-free nfer rule producing an interval
with a target identifier.

Formally, a CFG is a four-tuple (V,Σ, P, S), where V is a finite set of non-
terminals (or variables), Σ is the finite set of terminals that are disjoint from V ,
P is a finite set of productions of the form v → w where v ∈ V and w ∈ (V ∪Σ)∗,
and S is the initial non-terminal. We assume, without loss of generality, that a
CFG is in Chomsky-normal form [8].3 This means that all productions are in one
of two forms: A→ BC or A→ a where A,B,C ∈ V , a ∈ Σ, and S /∈ {B,C}.

Given a grammar (V,Σ, P, S), where A ∈ V , w, x, y ∈ (V ∪ Σ)∗, and (A →
x) ∈ P , then we say that wAy yields wxy, written wAy ⇒ wxy. We write
w
∗=⇒ y if w = y or there exists a sequence of strings x1, x2, . . . , xn for n ≥ 0

such that w ⇒ x1 ⇒ x2 ⇒ · · · ⇒ xn ⇒ y. The language of the grammar is
{w ∈ Σ∗ : S ∗=⇒ w}. If a word is in the language of the grammar we say it has a
derivation in the grammar. Deciding if the intersection of the languages of two
CFGs is empty is undecidable [3].

We use grammar Gx = (Vx, Σx, Px, Sx) accepting {a(an)(bn) : n > 0} as a
running example, where Vx = {A,B,M,M ′, Sx}, Σx = {a, b}, and Px = {A →
a,B → b, Sx → AM,M → AB,M → AM ′,M ′ →MB}. The string aab has the
derivation Sx ⇒ AM ⇒ AAB ⇒ AAb⇒ Aab⇒ aab.

We present six types of data-free nfer rules to simulate the intersection of
two CFGs G = (V,Σ, P, S) and G′ = (V ′, Σ, P ′, S′), where V ∩V ′ = ∅ and P ∩
P ′ = ∅. The first four steps are necessary to account for events with coincident
timestamps and because simulating a CFG requires the sequential composition of
non-terminals, while nfer rules cannot perform sequential composition directly
on atomic intervals. Then the final two steps map the productions of a CFG and
their intersection directly to data-free nfer rules. The six types of rules are:

1. Rules to label non-unique timestamps in an event trace so that they can be
filtered out. We do so, because event traces in nfer are allowed to have events
with the same timestamps while there is only one letter at each position of
a word. So, to simplify our translation between event traces and words, we
just filter out events with non-unique timestamps.

2. Rules that then perform the actual event filtering to only include events with
unique timestamps.

3. Rules that label every interval in a trace by its starting event, i.e. where
some event occurs at the start and some other event occurs at the end, we
label the interval by the starting event.

3 Note that we, w.l.o.g., disregard the empty word.



4. Rules that select the minimal starting-event-labeled intervals, i.e. the inter-
vals where no other interval is subsumed by that interval. The result of this
step is a set of contiguous intervals labeled by their starting event. These
minimal intervals are totally ordered and in one-to-one correspondence with
the original events with unique timestamps. Thus, we have transformed the
event trace into an equivalent pool of intervals.

5. Rules that simulate the productions of the CFGs on the pool of minimal
starting-event-labeled intervals. The generated intervals encode a derivation
tree. The word corresponding to the event trace is accepted by a CFG if an
interval is generated that is labeled by that grammar’s initial non-terminal.

6. A rule that labels an interval by a given target label if the simulation of
the two CFGs labeled the same interval by their initial non-terminals. The
interval is generated if the word corresponding to the same event trace is
accepted by both CFGs.

We begin by relating event traces to words. Event traces form a total preorder
as some timestamps may be equal, while the symbols in a word are totally
ordered by their index (no two symbols have the same index). To convert a word
to an event trace, we add a timestamp equal to the index of the event. Given a
word σ ∈ Σ∗, TRACE(σ) = (σ0, 0), (σ1, 1), . . . , (σn−1, n− 1) where n = |σ|. For
example, TRACE(aab) = (a, 0), (a, 1), (b, 2).

When converting an event trace to a word, however, we must only consider
events with unique timestamps. The following example trace illustrates the rea-
soning at this step: consider τx = (a, 0), (a, 1), (a, 2), (b, 2), (b, 3), (b, 4) where both
an a-labeled and a b-labeled event occur at timestamp 2. To convert τx to a word,
we want to order its identifiers using only their timestamps, and, consequently,
the two events with timestamp 2 cannot be ordered. As such, we ensure that
only events with unique timestamps affect the generation of intervals involved
in simulating a CFG. Before we show how to generate those intervals we define
formally what we mean by unique timestamps.

Given a trace τ = (η0, t0), (η1, t1), . . . , (ηn−1, tn−1), ti is unique in τ if for all
j ̸= i we have tj ̸= ti. Let UNIQ(τ) = {ti0 , ti1 , . . . , tik−1} be the set of unique
timestamps in τ such that tij < tij′ for all j < j′, i.e., we enumerate the unique
timestamps of τ in increasing order. Then, WORD(τ) = ηi0 , ηi1 , . . . , ηik−1 .

We now define data-free nfer rules that capture the definition of WORD.
The rules first generate atomic SPOIL intervals where multiple events share times-
tamps and then filter the events to only those that do not share timestamps with
those SPOIL intervals.

Given the alphabet Σ, we define rules to generate SPOIL intervals for non-
unique timestamps. We let SPOIL be a new identifier (SPOIL /∈ Σ).

D1 = {SPOIL← a coincide b : (a, b) ∈ Σ ×Σ ∧ a ̸= b} (1)

For example, applying D1 to the example trace τx defined above results in the
following intervals: T [[D1]](τx) = {(a, 0, 0), (a, 1, 1), (a, 2, 2), (b, 2, 2), (SPOIL, 2, 2),
(b, 3, 3), (b, 4, 4)}. Figure 1 shows this example on a timeline. In the top of the
figure, the solid line shows time progressing from left to right, with the identifiers



appearing in the trace given below their associated timestamps. The new SPOIL-
labeled interval is shown below the timeline, having been generated by the rules
in D1 shown on the right. The remainder of the figure relates to steps 2, 3, and 4.

a2 a2

b2 b2

a3 a3    a2 before a2�

a3    a2 before b2�

a4 a4    a3 unless contain a3�

0 1 2 3 4

a a a b b b

SPOIL

a2    a unless contain� SPOIL

b2    b unless contain� SPOIL

a3 

b3 

a3 a3 a3 

b3    b2 before b2�

b3    b2 before a2�

a4 

b4    b3 unless contain b3�b4 

a coincide b�SPOIL

Ancillary Event

D1

D2

D3

D4

b coincide a�SPOIL

b coincide b�SPOIL

a coincide a�SPOIL

Fig. 1. Example of applying steps 1-4 from the proof of Theorem 1

Proposition 1. Given a trace τ , T [[D1]] (τ) characterizes WORD(τ) in the fol-
lowing sense: {t : (SPOIL, t, t) ∈ T [[D1]] (τ)} is the difference between the set of
timestamps in τ and UNIQ(τ).

Now, we can define rules that filter the events to only those with unique
timestamps by excluding any that coincide with SPOIL-labeled intervals. These
rules ensure that the nfer simulation of a CFG uses exactly the same events
that are used in WORD: those with unique timestamps. Note that the intervals
generated by the rules in Di for steps i ∈ {2, 3, 4} are labeled by identifiers
annotated by the step number (ai) where a ∈ Σ and ai /∈ V ∪ V ′ ∪Σ.

D2 = {a2 ← a unless contain SPOIL : a ∈ Σ} (2)

Figure 1 shows the result of applying D2 to the result of T [[D1]] (τx). The
intervals (a2, 0, 0) and (a2, 1, 1) annotate a-labeled intervals that do not coincide
with a SPOIL-labeled interval, while (b2, 3, 3) and (b2, 4, 4) annotate the b-labeled
intervals that do not coincide with a SPOIL-labeled interval. No such annotated
intervals are produced at timestamp 2, where the rules in D1 generated a SPOIL-
labeled interval.

Recall that the intervals that result from the rules in D2 are still atomic,
i.e. they are effectively events and have a duration of zero. The next step is to



use those atomic intervals to generate every interval in the trace with a positive
duration (restricted to those with unique starting and ending timestamps in the
original trace τ). We label every such interval with a label derived from its start.

D3 = {a3 ← a2 before b2 : (a, b) ∈ Σ ×Σ} (3)

As shown in Figure 1, the intervals generated by applying D3 in our example
are (a3, 0, 1) from the rule a3 ← a2 before a2, (b3, 3, 4) from b3 ← b2 before b2,
and (a3, 1, 3), (a3, 0, 3), (a3, 1, 4), (a3, 0, 4) from a3 ← a2 before b2.

Now, we introduce rules that filter the intervals produced by the rules in D3
so that only the minimal intervals remain. A minimal interval is one where no
other interval (with the same label) is subsumed by it. The resulting intervals
form a contiguous sequence covering all unique timestamps in τ where their
meeting points are the atomic intervals produced by D2.

D4 = {a4 ← a3 unless contain a3 : a ∈ Σ} (4)

The reason for generating this contiguous sequence of intervals is that we
need to transform the input into elements that are sequentially composable us-
ing data-free nfer rules. To understand why, recall our example event trace:
τx = (a, 0), (a, 1), (a, 2), (b, 2), (b, 3), (b, 4). As seen in Figure 1, the atomic inter-
vals that result from applying D1 and D2 to this trace are {(a2, 0, 0), (a2, 1, 1),
(b2, 3, 3), (b2, 4, 4)}. Because these intervals do not overlap (they are atomic and
have unique timestamps) we can see from Table 1 that the only clock predicate
that can match two subsequent intervals (i.e., no labeled interval exists between
the end of the first and beginning of the second) is before. The rules in D3,
then, do that (match intervals using before rules) but these match both sub-
sequent and non-subsequent intervals. Applying the rule a3 ← a2 before b2,
for example, produces (a3, 1, 3), (a3, 0, 3), (a3, 1, 4), and (a3, 0, 4). To match
only subsequent intervals requires the rules from step four (in D4). Applying
a4 ← a3 unless contain a3 only generates (a4, 0, 1), (a4, 1, 3) because they do
not contain another a3-labeled interval, while (a3, 0, 3), (a3, 1, 4), and (a3, 0, 4)
do contain (a3, 0, 1) and (a3, 1, 2).

At this point, we must discuss what we call the Ancillary Event Phenomenon.
Because we must generate sequentially composable intervals to simulate a CFG,
and because these intervals must label the time between events, inevitably one
event per trace must be unrepresented by such intervals. Since we choose to label
the intervals by their starting event, the final event in the trace with a unique
timestamp does not label an interval. We call this the ancillary event in a trace.
In τx, the ancillary event is (b, 4).

After applying D1 ∪D2 ∪D3 ∪D4, we have the intervals (a4, 0, 1), (a4, 1, 3),
and (b4, 3, 4). These intervals are now sequentially composable because they
(uniquely) meet at timestamps 1 and 3, meaning we can use the meet clock
predicate to match only the contiguous intervals and no others.

With the sequentially composable intervals produced by the rules in D4, we
now can simulate the productions of the two CFGs. Recall that P and P ′ are



a4 a4 b4 

A     a4 coincide a4
�

B     b4 coincide b4
�

M     A meet B

Sx     A meet M�

�

D5

A 
A 

B 

M 

Sx 

Fig. 2. Example of applying step 5 from the proof of Theorem 1

the disjoint sets of these productions.

D5 = { A← a4 coincide a4 : (A→ a) ∈ P ∪ P ′ } ∪
{ A← B meet C : (A→ BC) ∈ P ∪ P ′ }

(5)

Unlike the rules from D1 ∪ D2 ∪ D3 ∪ D4, the rules in D5 may contain cycles
and must be iterated over until a fixed point is reached.

Figure 2 shows the result of applying D5 to the running example. Each rule
in D5, shown on the right side of the figure, maps to a production in Px and
the intervals they produce simulate a derivation for τx in Gx. Applying A ←
a4 before a4 produces (A, 0, 1) and (A, 1, 3), while B ← b4 before b4 produces
(B, 3, 4). Then, applying M ← Ameet B produces (M, 1, 4) and applying Sx ←
A meet M produces (Sx, 0, 4). As Sx is the initial non-terminal for Gx, an Sx-
labeled interval in the fixed point indicates that the trace τx during that interval
is in the language of Gx.

Next, we show that the data-free nfer simulation has the desired properties.
We begin by showing correctness for a single grammar, starting with soundness.

Lemma 1. Given a CFG G = (V,Σ, P, S) and a word σ ∈ Σ∗, fix an iden-
tifier a ∈ Σ for the ancillary event. Then, σ ∈ L(G) ⇔ (S, 0, |σ| − 1) ∈
T [[

⋃5
i=1 Di]] ( TRACE(σ · a) ).

Proof. The proof is by induction over j − i, showing that for a non-terminal
A ∈ V , A ∗=⇒ σ[i,j] ⇔ (A, i, j) ∈ T [[

⋃5
i=1 Di]] (TRACE(σ · a)).

We now show completeness for a single grammar.

Lemma 2. Given a CFG G = (V,Σ, P, S) and a trace τ ∈ E∗ such that |τ | ≥ 2,
let t be the second largest timestamp in UNIQ(τ) and let σ = WORD(τ). Then,
(S, 0, t) ∈ T [[

⋃5
i=1 Di]] (τ) ⇔ σ[0,|σ|−2] ∈ L(G).

Proof. By induction over j − i, showing that for a non-terminal A ∈ V and τ =
(η0, t0) · · · (ηn−1, tn−1), A ∗=⇒WORD(τ[i,j])⇔ (A, ti, tj) ∈ T [[

⋃5
i=1 Di]] (τ).

Finally, we check that a word is accepted by both grammars by labeling as ηT

where the timestamps of any S-and-S′-labeled intervals are the same. If any word



has a derivation in both G and G′, then applying
⋃6

i=1 Di to the corresponding
trace will result in a ηT -labeled interval in the fixed point.

D6 = {ηT ← S coincide S′} (6)

For example, suppose a second grammar G′x was introduced accepting the lan-
guage a+b+, where its initial non-terminal was S′x. The word aab is in the lan-
guage of G′x and so applying

⋃5
i=1 Di for G′x to the trace τx would yield a fixed

point containing the interval (S′x, 0, 4). Since (Sx, 0, 4) coincides with this inter-
val, applying the rule in D6 will yield (ηT , 0, 4).

Lemma 3. Given CFGs G and G′ and a word σ ∈ Σ∗, fix an identifier a ∈ Σ
for the ancillary event. Then, σ ∈ L(G) ∩ L(G′) ⇔ (ηT , 0, |σ| − 1) ∈
T [[

⋃6
i=1 Di]] (TRACE(σ · a)).

Proof. Lemma 1 implies that the CFGs G and G′ are simulated by
⋃5

i=1 Di for
a word σ and applying D6 finds words in the language of both grammars.

Lemma 4. Given CFGs G and G′ and a trace τ ∈ E∗ such that |τ | ≥ 2, let
t be the second largest timestamp in UNIQ(τ) and let σ = WORD(τ). Then,
(ηT , 0, t) ∈ T [[

⋃6
i=1 Di]] (τ) ⇔ σ[0,|σ|−2] ∈ L(G) ∩ L(G′)

Proof. Lemma 2 implies that the CFGs G and G′ are simulated by
⋃5

i=1 Di for
a trace τ and applying D6 finds words in the language of both grammars.

Now, we can prove Theorem 1.

Proof. Applying Lemmas 3 and 4 we obtain that L(G) ∩ L(G′) is non-empty if
and only if there is a τ ∈ E+ such that (ηT , , ) ∈ T [[

⋃6
i=1 Di]] (τ). This shows

that the undecidable non-emptiness problem for the intersection of two CFGs
can be reduced to the data-free nfer satisfiability problem.

As satisfiability of data-free nfer is undecidable, we now turn our attention
to examining fragments with decidable satisfiability. We identify two such frag-
ments: Inclusive nfer, where only inclusive rules are permitted, and Cycle-free
nfer, where specifications can be evaluated without a fixed-point computation.

3.2 Inclusive Data-Free nfer Satisfiability is in PTime

We begin our study with the case where an nfer specification may contain cycles
but only contains inclusive rules.

Theorem 2. The data-free, inclusive nfer satisfiability problem is in PTime.

We show that there is a polynomial-time algorithm that determines if an in-
put trace τ exists such that an ηT -labeled interval is in T [[D]]τ for a given specifi-
cation D. To do this, we show how the satisfiability of a data-free Inclusive-nfer
specification can be proven through an analysis of the rules without guessing



a witnessing trace. This is due to the monotone nature of inclusive nfer rules:
new events added to an input trace only add intervals and cannot invalidate
existing ones. We leverage this fact to show how only two factors influence the
satisfiability of cycle-free, inclusive nfer specifications: producibility from events
in Σ and the requirement of positive duration for some intervals.

To begin, observe that inclusive nfer rules are monotone in nature. The
interpretation functions R, S, and T only add intervals; they never remove them.
Furthermore, if the rule is inclusive, R only tests for the existence of intervals;
it only tests for non-existence in the case of exclusive rules. This means that
we may always introduce new events into an input trace without needing to
keep track of prior results. The consequence is that ensuring that a ηT -labeled
interval appears in a fixed-point of T [[D]] τ only requires showing that a rule
δT exists in D with ηT on its left-hand side and that δT may be matched by
intervals resulting from Σ-labeled events. This concept is very similar to graph
reachability and we define it here inductively.

Definition 1. Let Σ be a set of input identifiers and D an inclusive nfer spec-
ification. An identifier η is producible by D iff η ∈ Σ or if there exists a rule
(η ← η1 ⊕ η2) ∈ D and both η1 and η2 are producible by D.

We now prove that satisfiability for an nfer specification using only rules with
the before operator is equivalent to producibility. We discuss specifications with
only before-rules here because they allow us to ignore the interaction between
events, which have zero duration, and nfer operators which require positive
duration. We address this complication after proving Proposition 2.

Proposition 2. Given a set of input identifiers Σ and a target identifier ηT ,
an nfer specification Db containing only before rules is satisfiable iff ηT is
producible by Db.

Proof. If ηT ∈ Σ, then Db is satisfied by the trace (ηT , 0). If ηT ̸∈ Σ, then for Db

to be satisfiable there must a rule δT in Db with ηT on its left-hand side. Next,
observe from the definition of before in Table 1 that the only requirement of δT

to produce a ηT -labeled interval is that there exist intervals i1 and i2 such that
end(i1) < start(i2). Clearly, if id(i1) ∈ Σ and id(i2) ∈ Σ we can create an input
trace that satisfies this. If either identifier on the right-hand side of δT is not in
Σ, then apply the same logic inductively for that identifier.

The reverse follows by a similarly straightforward induction: if a ηT -labeled
interval is producible then Db is satisfiable.

To permit inclusive operators beyond before, we must address the require-
ment of positive duration. To see why we need to address positive duration, take,
for example, the overlap operator. Again from Table 1, we see that overlap
requires that start(i1) < end(i2) and start(i2) < end(i1). If we assume a zero du-
ration for i2, we still must have positive duration for i1: start(i1) < start(i2) =
end(i2) < end(i1), and the same holds for i2 if we assume zero duration for i1.
This means that, for an overlap-rule to match, at least one interval it matches



must have positive duration. As such, overlap-rules cannot match two initial
intervals (events), as they have zero duration.

Thus, producibility is insufficient to show satisfiability for inclusive-nfer
specifications. We must augment our definition of what is producible to account
for what intervals may be produced with positive duration.

Table 3 defines two functions from rules to sets of subsets of identifiers,
match+ : ∆ → 22I and add+ : ∆ → 22I . The match+ function returns the
identifiers that must appear in intervals with positive duration for a given rule
to match (produce an interval). The add+ function returns the identifiers that
must appear in intervals with positive duration for a given rule to produce an
interval with a positive duration. Both functions return values in Conjunctive-
Normal Form (CNF), meaning that at least one element of each set must have
positive duration. For example, match+(η ← η1meet η2) = ∅ because meet can
match two intervals with zero duration, but add+(η ← η1 meet η2) = {η1, η2}
because at least one of the two intervals it matches must have positive duration
for the result to have positive duration.

Table 3. Positive duration requirements on δ = (η ← η1 ⊕ η2) in CNF (for the sake
of readability, we identify a set of sets by a list of sets)
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match+(δ) ∅ ∅ ∅ ∅ ∅ ∅ {η1, η2} {η1, η2}
add+(δ) ∅ {η1, η2} {η2} {η1}, {η2} {η1, η2} {η1, η2} {η1, η2} {η1, η2}

Definition 2. Let Σ be a set of input identifiers and D an inclusive nfer spec-
ification. An identifier η is positive-duration capable in D iff there exists a rule
(η ← η1 ⊕ η2) = δ ∈ D such that for all A ∈ add+(δ), there exists an identifier
in A that is positive-duration capable in D.

Note that before-rules δ are always positive-duration capable, as we have
add+(δ) = ∅ for such δ. We now define duration-sensitive producibility for
identifiers in an inclusive nfer specification using match+ and the definition
of positive-duration capable identifiers.

Definition 3. Let Σ be a set of input identifiers and D an inclusive nfer spec-
ification. An identifier η is duration-sensitive producible by D iff η ∈ Σ or if
there exists a rule (η ← η1 ⊕ η2) = δ ∈ D such that η1 and η2 are both duration-
sensitive producible by D and for all M ∈ match+(δ), there exists an identifier
in M that is positive-duration capable in D.

It should be clear that the consequence of Definition 3 is the following lemma.

Lemma 5. Given a target identifier ηT , an inclusive nfer specification D is
satisfiable iff ηT is duration-sensitive producible by D.



Now, we can prove Theorem 2.

Proof. By Lemma 5, satisfiability for data-free inclusive nfer is equivalent to
duration-sensitive producibility. As duration-sensitive producibility is defined
inductively, there is a straightforward polynomial-time satisfiability algorithm
implementing Definition 3.

3.3 Cycle-Free Data-Free nfer Satisfiability is Decidable

Next, we consider data-free nfer with inclusive and exclusive rules, but without
cycles. Here, our decidability result is obtained by a transformation to monadic
first order logic (MFO) (see, e.g., [10] for details) over strings.

Theorem 3. The cycle-free data-free nfer satisfiability problem is decidable.

Proof. Given a cycle-free specification D, we will, for each identifier η, construct
an MFO formula φD,η(t0, t1) with free variables t0, t1, such that η is satisfiable
with respect to D iff φD,η(t0, t1) is satisfiable, i.e. there exists a string (word)
w over 2Σ and an assignment v : {t0, t1} → {0, . . . , |w| − 1} such that w, v |=
φD,η(t0, t1). Note, that for an event identifier η ∈ Σ, η(·) is a monadic predicate,
where η(t) evaluates to true in a string w over 2Σ at position t if and only if the
set of w at position t contains η. That is w, v |= η(t) if and only if η ∈ wv(t).

Now from w, v, where w, v |= φD,η(t0, t1), a satisfying input trace for η may
be obtained as the concatenation τw,v = (wt0 , t0)(wt0+1, t0+1) . . . (wt1 , t1), where
for a set σ = {η1, . . . , ηk} ⊆ Σ and t ∈ N, we denote by (σ, t) the (any) string
(η1, t)(η2, t) · · · (ηk, t).

Since D is cycle-free, we may order the identifiers by a topological sort of
the directed graph formed by the rules. The construction of φD,η(t0, t1) now
proceeds by induction on this order. In the base case, η is an event identifier.
Here φD,η(t0, t1) = (t0 = t1 ∧ η(t0)). For the inductive case, φD,η(t0, t1) is
obtained by a disjunction of all the rules for η in D, i.e.:

φD,η(t0, t1) =
∨

η←η1 op η2∈D
ψD,η1 op η2(t0, t1)

where op ∈ {⊕,unless ⊖}. Here the definition ψD,η1 op η2(t0, t1) is obtained
using the MFO formulas for η1 and η2 from the induction hypothesis. Here we
just give the definition for two rules, one inclusive and one exclusive rule, leaving
the remaining rules for the reader to provide.

ψD,η1 before η2(t0, t1) = ∃t′0, t′1. t0 ≤ t′1 < t′0 ≤ t1 ∧ φD,η1(t0, t′1) ∧ φD,η2(t′0, t1)
ψD,η1 unless after η2(t0, t1) = φD,η1(t0, t1) ∧ ∀t′0, t′1. (t′0 ≤ t′1 < t0 ≤ t1)⇒

¬φD,η2(t′0, t′1)

Thus, decidability of MFO satisfiability over finite strings [5, 9, 25] yields
decidability of cycle-free data-free nfer satisfiability.

Though the reduction to MFO in Theorem 3 yields the desired decidability
result, it comes with a non-elementary complexity [24]. We leave it open whether
the problem has elementary complexity.



4 Evaluation of Data-free nfer

The evaluation problem for nfer asks, given a specification D, a trace τ of
events, and a target identifier ηT , is there an ηT -labeled interval in T [[D]] τ? The
problem has been extensively studied in the presence of data, with complexities
ranging from undecidable (for arbitrary data and cycles in the rules) to PTime
(for finite data under the minimality constraint). We refer to [21] for an overview
of the results. One case that has not been considered thus far is the complexity
of the evaluation problem for data-free nfer.

Obviously, the result from [21] for finite-data covers the case of data-free spec-
ifications, but without the “minimality” meta-constraint that artificially limits
the size of the result, evaluation with only inclusive rules is PSpace-complete
(without cycles) and respectively ExpTime-complete (with cycles). Here, we
show that these results depend on the availability of (finite) data: data-free
nfer can be evaluated in polynomial time (even without minimality).

Theorem 4. The evaluation problem for data-free nfer is in PTime.

Proof. Consider an input consisting of a specification D, a trace τ of events, and
a target identifier ηT , and let k be the number of unique timestamps in τ .

Recall that an interval is completely specified by its identifier in I and its
starting and ending timestamp. Hence, as the application of rules does not create
new timestamps (cf. Table 1 and Table 2), the number of intervals in T [[D]] τ
is bounded by k2|I|. Furthermore, whether a rule is applicable to two intervals
can be checked in constant time. Thus, one can compute T [[D]] τ in polynomial
time and then check whether it contains an ηT -labeled interval.

5 Conclusion and Future Work

We have studied the complexity of the satisfiability and evaluation problems
for Data-free nfer. We proved that the evaluation problem is in PTime and
the satisfiability problem is undecidable in the general case, but decidable for
cycle-free specifications and in PTime for specifications with only inclusive rules.

There are still open questions around the complexity of nfer that may be
interesting. We showed that satisfiability for data-free nfer is decidable for cycle-
free specifications, but we do not prove a tight bound and we suspect it may
be possible to achieve improvements on the non-elementary upper-bound we
give. Another open question is if satisfiability is decidable for restricted cases
of nfer with data, for example if specifications are cycle-free and data is finite.
We are also interested in the complexity of monitoring nfer. Here and in other
works, nfer is presented with an offline semantics. A naïve monitoring algorithm
might simply recompute produced intervals each time a new event arrives, but
we suspect that better monitoring complexity can be achieved without requiring
assumptions beyond temporal ordering. We hope that this work inspires others to
examine the complexity of other modern Runtime Verification (RV) languages.
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Appendix

A A Graphical Explanation of Clock Predicates

In Figure 3, an interval is represented by a line with its label written above. Here,
time moves from left to right and the B-labeled interval is drawn only once and
shared by each example. For the example A← B before C, the B-labeled and
C-labeled intervals are matched because the B-labeled interval ends before the
C-labeled interval begins.

A     B before C

A     B meet C

B

CA

CA

A     B coincide C
C
A

A     B during C
C
A

B

A     B start C

A     B finish C

C
B

A     B slice C A

A     B overlap C B A

A

A

B

Fig. 3. Nfer clock predicates (⊕) for inclusive rules

In Figure 4, an interval is represented by a line with its label written above
and the absence of an interval is represented by the line being dashed. Like above,
time moves from left to right and the B-labeled interval is drawn only once and
shared by each example. For the example A← B unless after C, the B-labeled
and C-labeled intervals would be matched (if the C-labeled interval existed),
which would result in the A-labeled interval not being produced.

C

A     B unless after C

A     B unless follow C

B

C

A     B unless contain C C
A

A

A

Fig. 4. Nfer clock predicates (⊖) for exclusive rules

B An Algorithm for Duration-Sensitive Producibility

Algorithm 1 implements Definition 3 to determine the satisfiability of an inclu-
sive nfer specification. It works by computing sets of positive-duration capable
identifiers (I+) and duration-sensitive producible identifiers (IΣ). Recall that the
topological sort of the strongly-connected components of the graph formed by the
rules of an nfer specification gives a dependency ordering for the evaluation of



those rules. This order is computed on Line 2 and the strongly-connected compo-
nents D are iterated over. This set is then looped over |D| times on Lines 3 and 4.
In the worst case, we must loop |D| times to reach a fixed point. For each rule,
then, Line 5 tests that both the identifiers on the right-hand side are duration-
sensitive producible for that rule. If they are duration-sensitive producible, it
then tests on Lines 6 and 8 that the rule’s duration requirements are met using
match+ and add+. If, after iterating over the rules, ηT is labeled as duration-
sensitive producible, then the D is satisfiable.

Algorithm 1 Algorithm checking Data-Free Inclusive-nfer satisfiability
Require: Specification D, identifiers Σ, target identifier ηT

1: I+ ← ∅, IΣ ← Σ
2: for D ∈ topsort(SCC(D)) do
3: for 1 · · · |D| do
4: for η ← η1 ⊕ η2 ∈ D do
5: if {η1, η2} ∩ IΣ = {η1, η2} then
6: if ∀M ∈ match+(η ← η1 ⊕ η2). M ∩ I+ ̸= ∅ then
7: IΣ ← IΣ ∪ {η}
8: if ∀A ∈ add+(η ← η1 ⊕ η2). A ∩ I+ ̸= ∅ then
9: I+ ← I+ ∪ {η}

10: end for looping over rules in D
11: end for repeating |D| times
12: end for looping over strongly-connected components of D
13: if ηT ∈ IΣ then return SAT
14: else return UNSAT

Example 1. Suppose a target identifier ηT and a set of input identifiers Σ =
{a, b}. We now consider the result of applying Algorithm 1 to a satisfiable list
of inclusive rules with no cycles.
1. A← b before X. X is not in IΣ (I+ = ∅, IΣ = {a, b})
2. A ← a before b. a and b are both in IΣ and before matches and adds

duration without any other requirements (I+ = {A}, IΣ = {a, b, A})
3. B ← ameet b. a and b are both in IΣ and match+ for meet does not require

positive duration, but add+ does (I+ = {A}, IΣ = {a, b, A,B})
4. ηT ← a overlap B. a and B are both in IΣ , but match+ and add+ require

one of a,B to be positive-duration capable (I+ = {A}, IΣ = {a, b, A,B})
5. ηT ← A overlap B. A and B are both in IΣ , and A is positive-duration

capable, meeting the requirement (I+ = {A, ηT }, IΣ = {a, b, A,B, ηT })

Lemma 6. Algorithm 1 runs in O(n2) where n is the number of rules.

Proof. The topological sort of the strongly-connected components of the graph
of D can be computed in linear time. Then each rule is visited at most |D| times,
if all rules are in the same strongly-connected component. All other operations
are sub-linear.


