
Log Analysis and System Monitoring with nfer

Sean Kauffman1

Aalborg University, Denmark

Abstract
Nfer is a tool that implements the eponymous language for log analysis

and monitoring. Users write rules to calculate new information from an
event stream such as a program log either offline or online. In addition to
a command-line program, nfer exposes interfaces in Python and R and can
generate monitors for embedded systems. Nfer is designed to be fast and
has been repeatedly demonstrated to outperform similar tools.
Keywords: Log Analysis, Runtime Verification, Trace Abstraction

Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v1.8
C2 Permanent link to code/repository

used for this code version
https://nfer.io

C3 Permanent link to Reproducible
Capsule

https://doi.org/10.24433/CO.
0237670.v1

C4 Legal Code License GPLv3
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
C, Python, R, git, make

C7 Compilation requirements, operat-
ing environments & dependencies

xxd, flex, and bison

C8 If available Link to developer docu-
mentation/manual

http://nfer.io

C9 Support email for questions seank@cs.aau.dk

Table 1: Code metadata (mandatory)

1Funded by the ERC (LASSO) and the Villum Foundation (S4OS).

Preprint submitted to Science of Computer Programming November 30, 2022

https://nfer.io
https://doi.org/10.24433/CO.0237670.v1
https://doi.org/10.24433/CO.0237670.v1
http://nfer.io

1. Introduction

Nfer is a tool for offline and online log analysis. Users write rules in an
intuitive syntax to extract information from a trace of timestamped events.
The output of nfer is a hierarchy of time periods called intervals. Intervals
consist of an identifier (the type of interval), a begin time, an end time, and
arbitrary data accessed by string lookups.

The nfer tool is an open-source implementation of the eponymous lan-
guage, developed in collaboration between researchers from the the National
Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory
(JPL) and the University of Waterloo [1, 2, 3]. It was designed to help op-
erators of the Mars Science Laboratory (MSL) (Curiosity rover) and other
spacecraft better understand these remote systems. Nfer creates abstrac-
tions of event streams, meaning the information produced by applying nfer
rules is easier to comprehend than directly accessing the event stream. Nfer
abstractions form a hierarchy of temporal intervals: they can be built up from
smaller pieces to find meaningful information. Applying an nfer specification
can also be understood as adding prior knowledge to a trace, transforming
it into an easier to comprehend representation.

Nfer is especially well suited for analyzing logs from concurrent processes
where order is not well defined. Consider the following example. A short
section of a log file is shown in Figure 1 with output from system calls. Each
line in the log has a name, a timestamp, and some data associated. To debug
a problem using this log, a typical workflow might involve restructuring the
data to sort by timestamp, filtering the data by pid, and then manually
searching the result for anything concerning. If such a task is performed
regularly, an engineer might write a script to do this. Nfer allows a user to
write rules to perform these tasks easily and without ad hoc solutions that
are difficult to maintain. In the example, the rule finds a lock_irqsave event
during the interval between mutex_lock and mutex_unlock events with the
same pid. The result is the generation of an interval named locksave over
the period when the mutex was locked with the saved irq as its data.

Originally developed to inspect spacecraft telemetry, nfer was applied
to warning analysis for MSL [2]. Nfer was later used to search for errors in
embedded system call log with faults from ionizing radiation [4, 3]. Nfer has
also been integrated into the Palisade framework for distributed embedded
system anomaly detection and used to find gear change anomalies in an
autonomous vehicle [5].

Other work has been inspired by nfer, as well. An algorithm for min-
ing response properties from real-time embedded system logs was developed
using nfer and is implemented in the tool [6]. One work found that it was

2

mutex_lock,1646442281,pid=16523,lock=6758

inode_queue,1646442282,pid=16523,inode=1093888

fs_notify,1646442284,pid=8326

lock_irqsave,1646442286,pid=16523,irq=12

mutex_unlock,1646442430,pid=16523,lock=6758

fs_wake,1646442380,pid=8326

locksave :- save:lock_irqsave during (ml:mutex_lock before mu:mutex_unlock)

 where ml.pid = mu.pid map { irq -> save.irq }

locksave,1646442281,1646442430,irq=12

Event Log

Nfer

Rule

Interval Output

Figure 1: An example of extracting information from a log using nfer

possible to outperform Scala nfer (see Sec. 3) using six times the number
of lines of Cobra, a C-like imperative language for source code analysis [7].
Recently, the evaluation complexity of nfer was analyzed and found to be
PTime-complete when deployed in its most common configuration [8], al-
though the full formalism is Turing-complete.

2. Language and Tool

Nfer applies a list of rules to a sequence of timed events (treated as
intervals with zero duration), generating time intervals that carry data. An
inclusive nfer rule has the form η :- η1 ⊕ η2 where ϕ map ψ, where η, η1,
and η2 are identifiers, ⊕ is a temporal operator, ϕ is a data predicate, and
ψ is a data function. Given a set of intervals, a rule generates new intervals
with the identifier η when there exist intervals in the set with the identifiers
η1 and η2 that satisfy the temporal condition ⊕ and the data condition ϕ.
The generated intervals have timestamps and data determined by applying
⊕ and ψ to the matched intervals, respectively. Rules may depend on one
another and are applied until reaching a fixed point. Exclusive rules are
similar, but test for the non-existence of one of the intervals.

The rule syntax supported by the nfer tool supports many conveniences,
some of which are shown in Figure 1. The figure shows how temporal op-
erators may be nested (before is nested within during), identifiers may be
assigned short labels (save labels lock_irqsave), and ϕ and ψ functions are
specified using a familiar expression syntax.

The nfer tool is written in C and is available under the GPLv3 license [9].
The tool exposes four interfaces to apply specifications to traces and calculate
intervals: 1. command line, 2. compiled monitor, 3. Python, and 4. R. The
tool implements the nfer semantics for offline log analysis, but also supports

3

online event-stream analysis. Online execution requires events to occur in-
order for the full nfer language, but the requirement is dropped when only
using inclusive rules [8].

The simplest and most feature-rich way to use nfer is on the command
line. Nfer is available as an executable that reads a specification from a file
and accepts events either in a log file for offline processing or on standard in
for online processing. The command-line interface supports mining response
patterns (called before rules, in nfer) from real-time system traces [6], win-
dowing optimizations [3], and can generate a compiled monitor. Produced
intervals are sent to standard out.

The fastest way to execute nfer is using a compiled monitor. Nfer sup-
ports building monitors for use in embedded systems. These monitors are
generated from a specification and do not use dynamic memory allocation
or recursion. Monitor caches must be carefully configured to avoid memory
overflows and this can be done semi-automatically using the command-line
interface to calculate safe parameters for an input log.

Nfer also exposes language Application Programming Interfaces (APIs)
in Python and R. The interfaces are designed to permit integration with
code written in the host language with nfer. The Python API is focused on
monitoring execution of Python programs and includes automatic program
instrumentation and a web-based graphical display interface. The R API is
focused on processing data and supports input and output via R’s native
data frames via either user supplied specifications or mined rules.

3. Performance Evaluation

Nfer is not the only tool designed for log analysis and, in fact, it is
not even the only tool that implements the nfer language. A prototype
tool implementing nfer inclusive rules was written at JPL in Scala using
a different monitoring algorithm [3]. This tool, which we will refer to as
Scala nfer, was not originally available to the public2 which motivated the
C implementation of the same language. Now, however, the C version has
many more features than Scala nfer and drastically outperforms it.

We performed an experiment3 to demonstrate the performance difference
between the version of nfer presented in this work (C nfer) and the pro-
totype developed in Scala, the results of which are shown in Figure 3. This
experiment uses the specification developed to analyze system calls logs from
a QNX system subjected to ionizing radiation we called the LANL case study

2It has since been made open-source: git@github.com:rv-tools/nfer.git.
3Experiment files available at https://bitbucket.org/seanmk/nfer-bench.

4

git@github.com:rv-tools/nfer.git
https://bitbucket.org/seanmk/nfer-bench

in [3]. In the figure, the Y-axis represents the (mean) time needed to process
a trace and the X-axis shows how many events were present in the trace. All
evidence [3, 10] suggests (C) nfer is faster than Scala nfer for any workload
due to the speed of C and nfer’s many optimizations.

0

250

500

750

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Number of input events

E
xe

c
u

ti
o

n
 t

im
e

 (
s
) Tool

Interpreted C nfer
Compiled C nfer
Scala nfer

Figure 2: Execution time of the C and Scala implementations in the LANL case study

Nfer, with its Turing-complete language, has been demonstrated to be
faster than many other comparable tools. Prolog and LogFire took many
hours to complete tasks that nfer accomplished in seconds [3]. A comparison
with the Complex Event Processing system Siddhi showed that nfer had 35
times lower latency when monitoring that benchmark [5]. A compiled TeSSLa
monitor was very fast and outperformed interpreted nfer, but a compiled
nfer monitor was faster [11]. MonAmi and DejaVu needed to run offline to
compete with the Scala version of nfer from JPL but were unable to match
the speed of the C version described here [10].

4. Conclusion
Nfer is a tool for log analysis and monitoring that applies rules to time-

stamped events to generate a hierarchy of interval abstractions. Work on
nfer is ongoing, both from the theoretical and practical side. One extension
to the theory is to examine the satisfiability of nfer rules given a set of possi-
ble input identifiers. On the practical side, many improvements are planned
including extensions to testing, regular expression matching of strings, and
further refinement of the Python API. There is also a plan to include visual-
ization capabilities in every interface (not only Python). Finally, documenta-
tion and dissemination continue to be priorities as nfer gains visibility with
researchers outside its core area.

References
[1] S. Kauffman, R. Joshi, K. Havelund, Towards a logic for inferring

properties of event streams, in: Leveraging Applications of Formal

5

Methods (ISoLA’16), Vol. 9953 of LNCS, Springer, 2016, pp. 394–399.
doi:10.1007/978-3-319-47169-3_31.

[2] S. Kauffman, K. Havelund, R. Joshi, nfer–a notation and system for
inferring event stream abstractions, in: Runtime Verification (RV’16),
Vol. 10012 of LNCS, Springer, 2016, pp. 235–250. doi:10.1007/
978-3-319-46982-9_15.

[3] S. Kauffman, K. Havelund, R. Joshi, S. Fischmeister, Inferring event
stream abstractions, Formal Methods in System Design 53 (2018) 54–
82. doi:10.1007/s10703-018-0317-z.

[4] A. Narayan, S. Kauffman, J. Morgan, G. M. Tchamgoue, Y. Joshi,
C. Hobbs, S. Fischmeister, System call logs with natural random faults:
Experimental design and application, in: Silicon Errors in Logic – Sys-
tem Effects (SELSE’17), IEEE, 2017.

[5] S. Kauffman, M. Dunne, G. Gracioli, W. Khan, N. Benann, S. Fis-
chmeister, Palisade: A framework for anomaly detection in embedded
systems, Journal of Systems Architecture 113 (2021) 101876. doi:
10.1016/j.sysarc.2020.101876.

[6] S. Kauffman, S. Fischmeister, Mining temporal intervals from real-time
system traces, in: Software Mining (SoftwareMining’17), IEEE, 2017,
pp. 1–8. doi:10.1109/SOFTWAREMINING.2017.8100847.

[7] G. J. Holzmann, Comparing Two Methods for Checking Run-
time Properties, Springer, 2021, pp. 127–133. doi:10.1007/
978-3-030-87348-6_7.

[8] S. Kauffman, M. Zimmermann, The complexity of evaluating nfer,
in: Theoretical Aspects of Software Engineering (TASE’22), Vol.
13299 of LNCS, Springer, 2022, pp. 388–405. doi:10.1007/
978-3-031-10363-6_26.

[9] S. Kauffman, Website, http://nfer.io/, accessed: Jan 2022 (2022).

[10] K. Havelund, M. Omer, D. Peled, Monitoring first-order interval logic,
in: Software Engineering and Formal Methods (SEFM), Springer, 2021,
pp. 66–83. doi:10.1007/978-3-030-92124-8_4.

[11] S. Kauffman, nfer – a tool for event stream abstraction, in: Software
Engineering and Formal Methods (SEFM’21), Vol. 13085 of LNCS,
Springer, 2021, pp. 103–109. doi:10.1007/978-3-030-92124-8_6.

6

https://doi.org/10.1007/978-3-319-47169-3_31
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1016/j.sysarc.2020.101876
https://doi.org/10.1016/j.sysarc.2020.101876
https://doi.org/10.1109/SOFTWAREMINING.2017.8100847
https://doi.org/10.1007/978-3-030-87348-6_7
https://doi.org/10.1007/978-3-030-87348-6_7
https://doi.org/10.1007/978-3-031-10363-6_26
https://doi.org/10.1007/978-3-031-10363-6_26
http://nfer.io/
https://doi.org/10.1007/978-3-030-92124-8_4
https://doi.org/10.1007/978-3-030-92124-8_6

	Introduction
	Language and Tool
	Performance Evaluation
	Conclusion

