
Time for Timed Monitorability1

Thomas M. Grosen #2

Aalborg University, Aalborg, Denmark3

Sean Kauffman #4

Queen’s University, Kingston, Canada5

Kim G. Larsen #6

Aalborg University, Aalborg, Denmark7

Martin Zimmermann #8

Aalborg University, Aalborg, Denmark9

Abstract10

Monitoring is an important part of the verification toolbox, in particular in situations where11

exhaustive verification using, e.g., model-checking is infeasible. The goal of online monitoring is12

to determine the satisfaction or violation of a specification during runtime, i.e., based on finite13

execution prefixes. However, not every specification is amenable to monitoring, e.g., properties for14

which no finite execution can witness satisfaction or violation. Monitorability is the question of15

whether a given specification is amenable to monitoring, and has been extensively studied in discrete16

time.17

Here, we study the monitorability problem for real-time properties expressed as Timed Automata.18

For specifications given by deterministic Timed Muller Automata, we prove decidability while we19

show that the problem is undecidable for specifications given by nondeterministic Timed Büchi20

automata.21

Furthermore, we refine monitorability to also determine bounds on the number of events as well22

as the time that must pass before monitoring the property may yield an informative verdict. We23

prove that for deterministic Timed Muller automata, such bounds can be effectively computed. In24

contrast we show that for nondeterministic Timed Büchi automata such bounds are not computable.25

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of26

computation → Modal and temporal logics27

Keywords and phrases Monitorability, Monitoring, Timed Automata, MITL28

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2025.2829

Related Version arXiv Version: https://arxiv.org/abs/2504.10008 [22]30

Funding T. M. Grosen and K. G. Larsen have been funded by the Villum Investigator Grant S4OS.31

T. M. Grosen, K. G. Larsen, and M. Zimmermann have been supported by DIREC - Digital Research32

Centre Denmark. T. M. Grosen has been supported by Mitacs. S. Kauffman has been supported by33

the Natural Sciences and Engineering Research Council of Canada.34

1 Introduction35

A fundamental challenge in Runtime Verification (RV) is that many properties provide no36

utility when monitored in an online setting. Thus, it is of utmost importance to identify37

those properties that do provide useful information.38

Behaviors of long-running systems are typically specified as languages of infinite words,39

but online monitors only observe finite (prefixes of) system executions. Thus, a monitor40

has to determine whether such a finite prefix already implies satisfaction or violation of the41

property. While many different types of monitors have been proposed, most online monitors42

return information in the form of verdicts about the finite prefix. Inherently to the problem,43

there are at least three verdicts [10]: {⊤,⊥,?}, where ⊤ and ⊥ are conclusive verdicts44

© Thomas M. Grosen, Sean Kauffman, Kim G. Larsen, Martin Zimmermann;
licensed under Creative Commons License CC-BY 4.0

36th International Conference on Concurrency Theory (CONCUR 2025).
Editors: Patricia Bouyer and Jaco van de Pol; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmgr@cs.aau.dk
https://orcid.org/0009-0008-7719-6482
mailto:sean.k@queensu.ca
https://orcid.org/0000-0001-6341-3898
mailto:kgl@cs.aau.dk
https://orcid.org/0000-0002-5953-3384
mailto:mzi@cs.aau.dk
https://orcid.org/0000-0002-8038-2453
https://doi.org/10.4230/LIPIcs.CONCUR.2025.28
https://arxiv.org/abs/2504.10008
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Time for Timed Monitorability

that mean that the finite prefix guarantees that every possible infinite extension satisfies,45

respectively violates, the property, and the inconclusive verdict ? signifying that neither is46

the case.47

For example, consider an arbiter granting access to a shared resource. The property φ148

expressing “there is no request during the first second” is satisfied if the first request arrives49

after two seconds, no matter how the execution continues. Hence, the verdict for such a50

finite execution is ⊤. Similarly, the property φ2 expressing “after any request, there are no51

requests for at least one second” is violated as soon as two consecutive requests are observed52

within one second, no matter how the execution continues. Hence, the verdict for such a53

finite execution is ⊥. On the other hand, if requests arrive with a gap of two seconds between54

them, then the verdict for such a prefix (w.r.t. φ2) is ?, since there are infinite extensions55

satisfying the property and infinite extensions violating it.56

As seen above, there are prefixes for which we get a conclusive verdict w.r.t. φ2. This57

distinguishes it from properties like φ3 expressing “every request is eventually granted”, for58

which every finite prefix can be extended to satisfy the property and can be extended to59

violate it. Hence, every finite prefix yields the verdict ?. Phrased concisely: monitoring the60

property φ3 is futile.61

However, for the user it is not transparent, while receiving the verdict ?, whether in62

the future a conclusive verdict may be given, or whether every possible extension yields the63

verdict ?. The concept of monitorability has been introduced to capture those properties64

that are amenable to monitoring. It comes in two variants, strong monitorability (every65

prefix can be extended to one that yields a conclusive verdict) and weak monitorability (some66

prefix yields a conclusive verdict). In this language, φ3 is not weakly monitorable while φ167

and φ2 are (even strongly) monitorable. Thus, before constructing and deploying a monitor68

for a property, it is prudent to first check whether the property is monitorable.69

The problem of deciding if a property is monitorable has been studied extensively over70

the last 20 years (we discuss related work in Section 7), but only in the setting of discrete71

time until very recently. However, many properties require real-time constraints to express,72

e.g., deadlines like “every request is answered within 745 ms”. In particular, safety-critical73

systems are nearly always real-time systems with physics-based deadlines, and these systems74

tend to benefit the most from formal verification methods like RV. Had the property “the75

Therac 25 control program must wait eight seconds before switching between X-ray and76

electron modes” been monitored, it might have saved lives [26]. While monitoring algorithms77

exist for real-time properties [34, 9, 8, 23], the problem of real-time monitorability has gone78

largely unexamined.79

Our Contribution This work makes monitoring of real-time systems more useful by ex-80

amining the monitorability problem for real-time properties and by introducing qualitative81

refinements of the verdict ?. We consider real-time properties expressed by Timed Auto-82

mata (TA) over infinite words [3]. Nondeterministic Timed Büchi Automata (TBA) are used83

for model checking tools like Uppaal [25] and for monitoring temporal logics [23, 20, 14]84

and are strictly more expressive than deterministic Timed Muller Automata (DTMA). We85

prove that strong and weak monitorability are undecidable for nondeterministic TBA, but86

decidable for DTMA. Thus, one can algorithmically determine that it is futile to monitor87

properties like φ3, thereby increasing the applicability of monitoring of real-time systems.88

Furthermore, we introduce monitorability with step-bounded horizons that strengthens89

monitorability by limiting the number of events in a timed-word before a conclusive verdict90

must be reached. A step-bounded horizon allows one to determine for a given property91

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:3

and n ∈ N, if a conclusive verdict is possible within n steps, enabling corrective actions92

earlier. Again, we show that monitorability with step-bounded horizons is undecidable for93

nondeterministic TBA, but decidable for DTMA.94

Finally, we refine monitoring of real-time properties with time-horizon verdicts. Here, the95

verdict ? is enhanced with information about the minimum time until a conclusive verdict96

may be reached. Intuitively, before this time is reached, the monitor will only yield the97

inconclusive verdict ?, i.e., no information can be gained from querying the monitor before.98

This notion was introduced by Grosen et al. [23] as “time-predictive” monitoring. Here, we99

formally prove that time-horizon queries can be computed effectively for DTMA.100

Thus, our results highlight the importance of properties being given by deterministic101

timed automata when checking monitorability. This is in contrast to monitoring itself, where102

it suffices to have nondeterministic automata for the property and its negation [23], which103

is, e.g., the case when specifying properties in Metric Interval Temporal Logic [4]. Finally,104

we show that it is necessary to have automata for the property and the complement, as the105

monitoring function is otherwise not effectively computable.106

2 Preliminaries107

The nonnegative integers are denoted by N and the nonnegative reals by R≥0. An alphabet108

is a finite nonempty set of letters.109

A timed word is a pair ρ = (σ, τ), where σ is a (finite or infinite) word over an alphabet Σ110

and τ is a sequence of non-decreasing, non-negative real numbers of the same length as σ. For111

convenience, we often write (σ1, τ1)(σ2, τ2) · · · for a timed word (σ, τ). TΣ∗ and TΣω denote112

the sets of finite and infinite timed words over Σ. For n ∈ N∪{∞} we denote by TΣ≤n the set113

of timed words over Σ of length at most n. Given a finite word ρ = (σ1, τ1)(σ2, τ2) · · · (σn, τn),114

we denote its duration as τ(ρ) = τn. Slightly abusively, we write ε for the empty timed115

word (ε, ε) and define τ(ε) = 0. For a finite timed word ρ = (σ1, τ1)(σ2, τ2) · · · (σn, τn),116

a finite or infinite word ρ′ = (σ′
1, τ

′
1)(σ′

2, τ
′
2) · · · and a timepoint t ≥ τ(ρ), we define the117

concatenation of ρ and ρ′ at t as118

ρ ·t ρ′ = (σ1, τ1)(σ2, τ2) · · · (σn, τn)(σ′
1, τ

′
1 + t)(σ′

2, τ
′
2 + t) · · ·119

which is a timed word. As a shorthand, we write ρ ·ρ′ for ρ ·τ(ρ)ρ
′. Given two finite words ρ, ρ′

120

and a timepoint t ≥ τ(ρ), we write ρ ⊑t ρ
′ if there exists a ρ′′ such that ρ ·t ρ′′ = ρ′.121

▶ Example 1. Consider the words ρ = (a, 0)(b, 10) and ρ′ = (c, 5)(d, 15). We have122

ρ · ρ′ = ρ ·10 ρ
′ = (a, 0)(b, 10)(c, 15)(d, 25),123

ρ ·15 ρ
′ = (a, 0)(b, 10)(c, 20)(d, 30), and124

ρ′ · ρ = ρ′ ·15 ρ = (c, 5)(d, 15)(a, 15)(b, 25).125

Timed Automata A timed Büchi automaton (TBA) is a tuple A = (Q,Q0,Σ,X ,∆, F)126

where Q is a finite set of locations, Q0 ⊆ Q is the set of initial locations, Σ is an alphabet, X127

is a finite set of clocks, F ⊆ Q is a set of accepting locations, and ∆ ⊆ Q×Q×Σ×2X ×G(X)128

is a set of transitions, where G(X) is the set of clock constraints over X . A transition129

(q, q′, α, λ, g) ∈ ∆ is an edge from q to q′ with label α ∈ Σ, where λ ∈ 2X is a set of clocks130

to be reset and g ∈ G(X) is a clock constraint. A clock constraint is a finite conjunction of131

atomic constraints of the form x ∼ n where x ∈ X , n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. A state132

of A is a pair (q, v) where q ∈ Q and v : X → R≥0 is a clock valuation.133

CONCUR 2025

28:4 Time for Timed Monitorability

A run of A from a state (q0, v0) over an infinite word (σ, τ) ∈ TΣω is a sequence of steps134

of the form135

(q0, v0) (σ1,τ1)−−−−→ (q1, v1) (σ2,τ2)−−−−→ (q2, v2) (σ3,τ3)−−−−→ · · ·136

where for every i ≥ 1, there is a transition (qi−1, qi, σi, λi, gi) ∈ ∆ such that vi(x) = 0 for137

all x ∈ λi and vi(x) = vi−1(x) + τi − τi−1 otherwise, and g is satisfied by vi−1 + τi − τi−1138

(where we use τ0 = 0). For a run r, inf(r) ⊆ Q denotes the set of locations visited infinitely139

often in r. A run r is (Büchi) accepting if inf(r) ∩ F ̸= ∅.140

A timed Muller automaton (TMA) A = (Q,Q0,Σ,X ,∆,F) is like a TBA, but the set F141

of accepting locations is replaced by a set F ⊆ 2Q of sets of locations. A run r of A is142

(Muller) accepting if inf(r) ∈ F .143

The language L(A) of a timed (Büchi or Muller) automaton is the set of words ρ ∈ TΣω
144

such that A has an accepting run over ρ.145

An automaton is deterministic if the set of initial locations is a singleton and if all edges146

from the same location and with the same label must have disjoint clock constraints. We use147

the abbreviations DTBA and DTMA to refer to the two deterministic automaton models.148

▶ Proposition 2. The following results on TBA and TMA are due to Alur and Dill [3].149

1. Let A = (Q,Q0,Σ,X ,∆, F) be a TBA and let A′ = (Q,Q0,Σ,X ,∆, {F ′ | F ∩ F ′ ̸= ∅}),150

which is a TMA. Then, L(A) = L(A′). Furthermore, if A is deterministic, then so is A′.151

2. For every TMA A = (Q,Q0,Σ,X ,∆,F), there is a TBA A′ with L(A) = L(A′). The set152

of locations of A′ has the form Q× F × {0, 1, . . . , |Q|}.153

3. The class of languages accepted by DTMA is a strict subset of the class of languages154

accepted by TBA.155

Logic We use Metric Interval Temporal Logic (MITL) to formally express properties to be156

monitored. The syntax of MITL formulas over a finite alphabet Σ is defined as157

φ ::= p | ¬φ | φ ∨ φ | XIφ | φ UIφ158

where p ∈ Σ and I ranges over non-singular intervals over R≥0 with endpoints in N ∪ {∞}.159

Note that we often write ∼ n for I = {d ∈ R≥0 | d ∼ n} where ∼ ∈ {<,≤,≥, >}, and160

n ∈ N. We also define the standard syntactic sugar true = p ∨ ¬p, false = ¬true,161

φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ = ¬φ ∨ ψ, FIφ = true UIφ, and GIφ = ¬FI¬φ.162

The semantics of MITL is defined over infinite timed words. Given such a timed163

word ρ = (σ1, τ1)(σ2, τ2) · · · ∈ TΣω, a position i ≥ 1, and an MITL formula φ, we inductively164

define the satisfaction relation ρ, i |= φ as follows:165

ρ, i |= p if and only if p = σi.166

ρ, i |= ¬φ if and only if ρ, i ̸|= φ.167

ρ, i |= φ ∨ ψ if ρ, i |= φ or ρ, i |= ψ.168

ρ, i |= XIφ if and only if ρ, (i+ 1) |= φ and τi+1 − τi ∈ I.169

ρ, i |= φ UIψ if and only if there exists k ≥ i s.t. ρ, k |= ψ, τk − τi ∈ I, and ρ, j |= φ for170

all i ≤ j < k.171

We write ρ |= φ whenever ρ, 1 |= φ, and say that ρ satisfies φ. The language L(φ) of an172

MITL formula φ is the set of all infinite timed words that satisfy φ.173

▶ Proposition 3 ([4, 12]). For each MITL formula φ there is a TBA A such that L(φ) = L(A).174

▶ Example 4. Figure 1 illustrates the above proposition by providing a DTBA over the175

alphabet Σ = {a, b, c} for the formula F[0,10]a ∧G[0,20]¬b and its negation.176

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:5

φ¬φ a

x ≤ 10
a, b, c

x > 20

b

a, c

x > 10
b

x ≤ 20
a, b, c

a, c

x ≤ 20

a, b, c

c

x ≤ 10

Figure 1 DTBA for the language of the MITL formula φ = F[0,10]a ∧ G[0,20]¬b and its negation:
If location φ (¬φ) is accepting then it accepts L(φ) (L(¬φ), respectively).

Monitoring The monitoring problem asks to make verdicts about the satisfaction or violation177

of properties (over infinite timed words) after having observed only a finite prefix. Here, we178

follow the classical approach of considering the possible extensions of a finite observations.179

▶ Definition 5 (Observation). An observation is a pair (ρ, t) containing a finite timed word ρ180

and a timepoint t ≥ τ(ρ), representing the current timepoint (which might be later than the181

last observed event in ρ). As we use observations as inputs for algorithms, we require that all182

timepoints in ρ and t are rational.183

We continue with giving some intuition for the three-valued monitoring approach. Here,184

one is given an observation and aims to determine whether a property φ (of infinite timed185

words) is already satisfied, already violated, or neither.186

If all possible extensions of the observation satisfy φ, then we give the corresponding187

verdict ⊤ signifying that the observation conclusively witnesses satisfaction of φ.188

If all possible extensions of the observation violate φ, then we give the corresponding189

verdict ⊥ signifying that the observation conclusively witnesses violation of φ.190

Otherwise, i.e., if there is an extension of the observation that satisfies φ and there is a191

extension of the observation that violates φ, then we give the inconclusive verdict ?.192

Let us formalize this intuition.193

▶ Definition 6 (Timed Monitoring Function). Given a property φ ⊆ TΣω and an observa-194

tion (ρ, t), the monitoring function Vφ is defined as195

Vφ(ρ, t) =


⊤ if ρ ·t µ ∈ φ for all µ ∈ TΣω,

⊥ if ρ ·t µ ̸∈ φ for all µ ∈ TΣω,

? otherwise.
196

In the following, we use Vφ(ρ) as a shorthand for Vφ(ρ, τ(ρ)).197

▶ Example 7. Consider the specification φ = F[0,10]a ∧G[0,20]¬b from Example 4. We have198

Vφ((a, 3), 4) = ?,199

Vφ((a, 11), 11) = ⊥,200

Vφ((a, 3)(c, 7), 13) = ?,201

Vφ((a, 3)(c, 7)(c, 22), 22) = ⊤, but202

Vφ((a, 3)(c, 7)(b, 12), 12) = ⊥. Also,203

Vφ((a, 3)(c, 7), 22) = ⊤ while204

Vφ((a, 3)(c, 7)) = Vφ((a, 3)(c, 7), 7) = ?, i.e., the current timepoint t can yield conclusive205

verdicts when time is passing, even if no new events are observed.206

CONCUR 2025

28:6 Time for Timed Monitorability

▶ Proposition 8 (Effectiveness of Timed Monitoring [23]). Vφ is effectively computable by a207

zone-based online algorithm1 that requires TBA for both φ and TΣω \ φ.208

Recall that TBA are not closed under complement [3], so this result is not applicable to all209

properties accepted by TBA. However, for the important special case of properties φ specified210

in MITL, Vφ is effectively computable, as MITL properties are closed under complementation211

(as the logic allows for negations) and MITL formulas can be translated into equivalent TBA212

(see Proposition 3). Similarly, when φ is given by a DTMA, then Vφ is effectively computable,213

as DTMA are closed under complementation and can be turned into equivalent TBA [3].214

However, it was previously open whether Vφ was computable if φ was given by a215

non-deterministic automaton, but we did not have access to an automaton for the comple-216

ment TΣω \ φ. In Section 3, we answer the question negatively.217

Monitorability Not every property is amenable to monitoring, e.g., for φ = G≥0F≥0a, we218

have Vφ(ρ, t) = ? for every observation (ρ, t). The reason is that every ρ can be extended to219

satisfy φ and can be extended to violate φ. In the untimed setting, much effort has been put220

into characterizing the monitorable properties, i.e., those for which monitoring can generate221

some information. Here, we consider monitorability in the timed setting.222

▶ Definition 9 (Timed Monitorability). Fix an observation (ρ, t) and a property φ ⊆ TΣω.223

φ is strongly (ρ, t)-monitorable if and only if224

for all ρ′ ∈ TΣ∗ there exists ρ′′ ∈ TΣ∗ such that Vφ(ρ ·t ρ′ · ρ′′) ∈ {⊤,⊥}.225

φ is weakly (ρ, t)-monitorable if and only if226

there exists ρ′′ ∈ TΣ∗ such that Vφ(ρ ·t ρ′′) ∈ {⊤,⊥}.227

φ is strongly monitorable if it is strongly (ε, 0)-monitorable.228

φ is weakly monitorable if it is weakly (ε, 0)-monitorable.229

▶ Example 10.230

1. Consider the property φ1 = F≥0a. For every observation (ρ, t), we have Vφ1(ρ ·t (a, 0), t) =231

⊤. Hence, φ1 is strongly monitorable.232

2. Now, consider φ2 = a → G≥0F≥0a. Then, we have Vφ2((b, 0), 0) = ⊤, as every extension233

of ((b, 0), 0) satisfies φ2 (as the premise is violated). Hence, φ2 is weakly monitorable.234

However, it is not strongly monitorable: Consider the observation ((a, 0), 0), for which235

every extension satisfies the premise. We have (a, 0) ·0 ρ′′ · (a, 0)(a, 1)(a, 2) · · · |= φ2 and236

(a, 0) ·0 ρ′′ · (b, 0)(b, 1)(b, 2) · · · ̸|= φ2. Hence, Vφ2((a, 0) ·0 ρ′′) = ? for all ρ′′.237

3. Now, consider φ3 = G≥0F≥0a. Arguments as for φ2 show that it is neither strongly nor238

weakly monitorable, as every finite word can be extended by (a, 0)(a, 1)(a, 2) · · · to satisfy239

φ3 and can be extended by (b, 0)(b, 1)(b, 2) · · · to violate φ3.240

▶ Remark 11. The astute reader might wonder why we quantify only over words ρ′ (and ρ′′)241

in Definition 9 and not over words and timepoints to concatenate at. The reason is that both242

definitions are equivalent, as ρ1 ·t ρ2, for finite words ρ1 and ρ2 and a timepoint t ≥ τ(ρ), is243

equal to ρ1 · ρ′
2, where ρ′

2 is obtained from ρ2 by incrementing all its timepoints by t− τ(ρ1).244

Let us continue by collecting some simple consequences of Definition 9.245

1 See Page 11 for a formal definition of zones.

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:7

▶ Remark 12. Let (ρ, t) and (ρ′, t′) be two observations with ρ ⊑t ρ
′, and let φ ⊆ TΣω.246

1. If φ is strongly (ρ, t)-monitorable, then it is also weakly (ρ, t)-monitorable. Thus, if φ is247

strongly monitorable, then it is also weakly monitorable.248

2. If φ is strongly (ρ, t)-monitorable, then it is also strongly (ρ′, t′)-monitorable.249

3. If φ is not weakly (ρ, t)-monitorable, then it is also not weakly (ρ′, t′)-monitorable.250

In the following we study the decidability of monitorability, i.e., we consider the following251

decision problems where properties are given by timed automata:252

1. Given a property φ, is φ strongly monitorable?253

2. Given a property φ, is φ weakly monitorable?254

3. Given a property φ and an observation (ρ, t), is φ strongly (ρ, t)-monitorable?255

4. Given a property φ and an observation (ρ, t), is φ weakly (ρ, t)-monitorable?256

By definition, if Problem 3 is decidable for a class of properties, then Problem 1 is also257

decidable for the same class of properties. Hence, if Problem 1 is undecidable for a class of258

properties, then Problem 3 is also undecidable for the same class of properties. A similar259

relation holds between Problem 2 and Problem 4.260

3 Monitoring and Monitorability for TBA261

In this section, we prove that the monitoring function is not computable and that the strong262

types of monitorability are undecidable when the property is given by a TBA. Note that this263

shows that the positive results for monitoring in the literature [23, 20, 14], which require264

automata both for the property and its complement, are tight in that sense: Only giving265

an automaton for the property, but not for its complement, is not sufficient to compute the266

monitoring function. We start by investigating the computability of the monitoring function.267

▶ Theorem 13 (Ineffectiveness of Timed Monitoring). The function “Given a TBA A and an268

observation (ρ, t), return VL(A)(ρ, t)” is not computable.269

Proof. For every property φ ⊆ TΣω, we have Vφ(ε, 0) = ⊤ if and only if φ = TΣω. Hence,270

universality of a TBA A reduces to checking whether VL(A)(ε, 0) = ⊤. As universality for271

timed automata is undecidable [5], the monitoring function cannot be computable. ◀272

Note that the specification automaton A is part of the input in the problem considered273

in Theorem 13. We leave it open whether VL(A) is computable for every fixed A, i.e., in the274

setting where only the observation is the input.275

Next, we turn our attention to deciding monitorability for TBA.276

▶ Theorem 14. Strong and weak monitorability are undecidable for properties given by TBA.277

Proof. Strong monitorability for untimed non-deterministic Büchi Automata is PSpace-278

complete [17], which can be shown by a reduction from the universality problem [18].279

Analogously, we reduce the (undecidable [3]) universality problem for non-deterministic280

timed automata (over finite words) to the problem of strong monitorability, following Diekert,281

Muscholl, and Walukiewicz [18].282

Let A = (Q,Q0,Σ,X ,∆, F) be such a timed automaton, i.e., a finite run is accepting if it283

ends in a location in F . We assume w.l.o.g. that A is complete in the sense that every word284

has a run. This can always be achieved by adding a fresh sink location and by rerouting all285

missing transitions to it.286

We add a new letter # /∈ Σ to obtain Σ# = Σ ∪ {#} and construct a TBA A′ =287

(Q′, Q0,Σ#,X ,∆′, F ′) from A such that A′ is strongly monitorable if and only if L(A) = TΣ∗.288

CONCUR 2025

28:8 Time for Timed Monitorability

To this end, we introduce three new locations r, s, t, i.e., Q′ = Q ∪ {r, s, t}. Next, we define289

∆′ (see Figure 2) by copying the transitions from ∆ and by adding the following transitions,290

where we write q a−→ q′ to denote (q, q′, a, ∅, true):291

{q #−→ r | q ∈ Q \F}: from every non-accepting location of A, there is a #-transition to r.292

{r a−→ s, s
a−→ s | a ∈ Σ}: for every a ̸= # there is an a-transition from r to s and an293

a-labeled self-loop on s.294

{s #−→ r, r
#−→ r}: there is a #-transition from s to r and a #-labeled self-loop on r.295

{q #−→ t | q ∈ F}: from every accepting location there is a #-transition to t.296

{t a−→ t | a ∈ Σ#}: for every letter in Σ#, there is a self-loop on t labeled with that letter.297

We define the accepting locations of A′ as F ′ = Q ∪ {r, t}.298

Q \ F F
trs

#

Σ#

#

Σ

#
#Σ

Figure 2 The TBA A′ constructed for the proof of Theorem 14.

Figure 2 shows the TBA A′ with the locations of the (finite-word) timed automaton A299

partitioned into F and Q \ F . In the figure, the new locations r, s, and t and accompanying300

transitions are shown separately from the original automaton. Double circles denote accepting301

locations. Intuitively, processing a # from an accepting location of A takes the run to the302

accepting sink t. On the other hand, processing a # from a non-accepting location of A takes303

the run to a component where the run continuation is accepting if and only if it processes304

infinitely many #’s.305

It remains to show that the language L(A′) is strongly monitorable if and only if306

L(A) = TΣ∗. One direction is trivial: If L(A) = TΣ∗, then L(A′) = TΣω
#, as all words307

without a # can be processed using the states of the complete automaton A (which are all308

accepting in A′) and all words with a # can be accepted by moving to state t (which is an309

accepting sink) when processing the first #. Hence, L(A′) is strongly monitorable.310

On the other hand, if L(A) ̸= TΣ∗, then there exists a finite word ρ /∈ L(A). Hence,311

every run prefix of A′ processing ρ ·τ(ρ) (#, τ(ρ)) must be in location r. Now, chose some312

a ∈ Σ. Then, for all ρ′′ ∈ TΣ∗
#, we have:313

ρ ·τ(ρ) (#, τ(ρ)) · ρ′′ · (a, 0)(a, 1)(a, 2) · · · /∈ L(A′) (as it contains only finitely many #).314

ρ ·τ(ρ) (#, τ(ρ)) · ρ′′ · (#, 0)(#, 1)(#, 2) · · · ∈ L(A′) (as it contains infinitely many #).315

Hence, VL(A′)(ρ ·τ(ρ) (#, τ(ρ)) · ρ′′) = ? for all ρ′′. Thus, L(A′) is not strongly monitorable.316

In the case for weak monitorability we reduce the (undecidable [3]) universality problem317

for TBA (not TA as we did in the strong case). Additionally, as an intermediate step, we318

consider a problem about Brzozowski derivatives of properties of infinite timed words: Let319

ρ ∈ TΣ∗ be a finite timed word and φ ⊆ TΣω be such a property. We say that ρ is a universal320

prefix for φ if the Brzozowski derivative321

{µ ∈ TΣω | ρ · µ ∈ φ}322

of φ and ρ is equal to TΣω. Note that if φ is equal to TΣω, then every prefix is universal for323

φ. However, the property (a, 0) · TΣω has a universal prefix (e.g., (a, 0)), but is not universal.324

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:9

Further, we say that φ is weakly ⊤-monitorable (cp. Definition 21) if and only if there is a325

ρ such that Vφ(ρ) = ⊤, i.e., in comparison to (standard) weak monitorability, we only consider326

the verdict ⊤. Note that φ has a universal prefix if and only if it is weakly ⊤-monitorable.327

So, it remains to first reduce universality of TBA to the existence of a universal prefix for328

languages of TBA and then to reduce weak ⊤-monitorability to weak monitorability.329

We begin with reducing TBA universality to the existence of universal prefixes. Intuitively,330

we add edges allowing to “restart” a run which allows every prefix to simulate the empty331

prefix. Then, every prefix behaves like the empty prefix, which is universal if and only if the332

automaton is universal.333

Let A = (Q,Q0,Σ,X ,∆, F) be a TBA. We add a new letter # /∈ Σ to obtain Σ# = Σ∪{#}334

and construct a TBA A′ = (Q′, Q0,Σ#,X ,∆′, F ′) from A such that L(A) = TΣω if and335

only if A′ has a universal prefix. To this end, we introduce two new locations r and s, i.e.,336

Q′ = Q ∪ {r, s}. Next, we define ∆′ (see Figure 3) by copying the transitions from ∆ and by337

adding the following transitions, where we write q a−→ q′ to denote (q, q′, a, ∅, true):338

{q a−→ r | q ∈ Q0, a ∈ Σ#}: from every initial location of A, there is an a-transition to r339

for every a ∈ Σ#.340

{r a−→ s, s
a−→ s | a ∈ Σ}: for every a ̸= # there is an a-transition from r to s and an341

a-labeled self-loop on s.342

{s #−→ r, r
#−→ r}: there is a #-transition from s to r and a #-labeled self-loop on r.343

{(q, q0,#,X , true) | q ∈ Q, q ∈ Q0}: from every location there is a #-transition to each344

initial location, which resets all clocks.345

We define the accepting locations of A′ as F ′ = Q ∪ {r}.346

A

rs

#

#

#
Σ#

Σ

#
#Σ

Figure 3 The TBA A′ constructed for the proof of Theorem 14.

Let L(A) = TΣω and fix some µ′ ∈ TΣω
#. If µ′ contains infinitely many #’s, then it is347

accepted by A′ using the new states r and s. On the other hand, if µ′ contains only finitely348

many #’s, then it has the form349

µ′ = ρ0 · (#, t0) · ρ1 · (#, t1) · · · (#, tn−2) · ρn−1 · (#, tn−1) · µ′′
350

for some n ≥ 0, where the ρi and µ′′ are #-free. As each ρi is a prefix of some word in351

L(A) = TΣω and µ′′ is in L(A) = TΣω, one can construct an accepting run of A′ on µ′.352

Thus, L(A′) = TΣω
#, i.e., ε is a universal prefix of A′.353

Now for the other direction. If a word ρ is a universal prefix of A′, then for all µ ∈ TΣω,354

the word ρ · (#, 0) · µ is accepted by A′. Hence, there is an accepting run of A′ on ρ · (#, 0) · µ.355

As all #-transitions lead to an initial state of A and reset the clocks, and as µ does not356

contain any #’s, the suffix of the run on µ must also be an accepting run of A, i.e., we have357

µ ∈ L(A). Thus, L(A) = TΣω. This concludes the first step of our proof.358

In the second and last step of our proof we reduce weak ⊤-monitorability to (standard)359

weak monitorability. Intuitively, we manipulate the automaton so that it can never give the360

verdict ⊥ while preserving the existence of observations that yield the verdict ⊤.361

Let A = (Q,Q0,Σ,X ,∆, F) be a TBA. We add a new letter # /∈ Σ to obtain Σ# =362

Σ ∪ {#} and construct a TBA A′ = (Q′, Q′
0,Σ#,X ,∆′, F ′) from A such that A is weakly363

⊤-monitorable if and only if A′ is weakly monitorable.364

CONCUR 2025

28:10 Time for Timed Monitorability

Now Q′ essentially contains two copies of Q: Q1 = Q× {1} and Q2 = Q× {2} as well as365

a new additional accepting location r. The transition relation of A′ is defined as follows (see366

also Figure 4), we write q a−→ q′ to denote (q, q′, a, ∅, true):367

{(q, 1) #−→ (q, 1), (q, 1) #−→ r | q ∈ Q}: locations of Q1 have a #-labeled self-loop and a368

#-transition to r.369

{((q, 1), (q′, 2), a, λ, g) | (q, q′, a, λ, g) ∈ ∆}: locations of Q1 have their Σ-labeled trans-370

itions redirected to Q2.371

{(q, 2), (q′, 2), a, λ, g) | (q, q′, a, λ, g) ∈ ∆}: locations of Q2 have copies of the Σ-labeled372

transitions from A.373

{(q, 2) #−→ (q, 1) | q ∈ Q}: locations of Q2 have #-labeled transitions directed back to Q1.374

{r #−→ r}: The new location r has a #-labeled self-loop.375

The set Q′
0 of initial locations of A′ is Q0 × {1} and the set F ′ of accepting locations of A′

376

is F × {2} ∪ {r}.377

Q1 Q2

r
#
#

#

#
#

#

#

Σ

#

Σ

Figure 4 The TBA A′ constructed for the proof of Theorem 14. Intuitively, A′ has two disjoint
copies of the locations of A and Σ-labeled transitions lead from both copies to the second copy,
while #-labeled transitions from the second copy lead to the first copy. The first copy additionally
has #-labeled self-loops on all locations and #-labeled transitions to r.

Now, let ρ ∈ TΣ∗ be a timed word witnessing weak ⊤-monitorability of A, i.e., ρ·µ ∈ L(A)378

for every µ ∈ TΣω. We define ρ′ = ρ. In A, processing ρ′ leads to a location in Q2. We argue379

that ρ′ witnesses weak monitorability of A′. To this end, consider any µ′ ∈ TΣω
and let µ380

be obtained from µ′ by removing all occurrences of #. If µ is infinite, we may simply mimic381

the accepting run of A on µ from ρ in A′. Clearly, this will also be accepting. If µ is finite,382

µ′ must have a suffix of the form (#ω, τ), where τ is a sequence of timepoints. This suffix is383

accepted by utilizing the # transitions to r, from where the suffix (#ω, τ) can be accepted.384

For the opposite direction, let ρ′ ∈ TΣ∗
be a timed word witnessing weak monitorability385

of A′. That is, either ρ′ ·µ′ ∈ L(A′) for all µ′ or ρ′ ·µ′ ̸∈ L(A′) for all µ′. However, note that386

for any finite ρ′, we have ρ′ · (#, 0)(#, 1)(#, 2) · · · ∈ L(A′), due to the #-labeled transition387

to r, from where (#, 0)(#, 1)(#, 2) · · · is accepted. Thus, we must be in the first case where388

we have ρ′ · µ′ ∈ L(A′) for all µ′.389

Now, let ρ ∈ TΣ∗ be obtained from ρ′ by stripping all occurrences of # in ρ′. We390

show that ρ is a word witnessing weak ⊤-monitorability of A. Note that any run of A′
391

on ρ′ reaching a location in Q1 or Q2 can be mimicked by a run of A on ρ reaching the392

corresponding location in Q. Let µ ∈ TΣω. Then ρ′ ·µ ∈ L(A′). Clearly, this must be due to393

an accepting run where a suffix of the run processing µ stays in Q2. Hence, ρ · µ ∈ L(A), as394

we may mimic, for the prefix ρ, the prefix processing ρ′ of the accepting run of A′ processing395

ρ′ · µ, and, for the suffix µ, we simply copy the run staying in Q2. ◀396

Due to Remark 12, we also obtain the undecidability of strong and weak (ρ, t)-moni-397

torability.398

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:11

▶ Corollary 15. Strong and weak (ρ, t)-monitorability is undecidable for properties given by399

TBA, even if (ρ, t) is fixed.400

4 Monitorability for DTMA401

In this section, we show that (strong and weak) monitorability is decidable for properties402

given by DTMA. The key difference to TBA, for which we have shown that monitorability is403

undecidable, is that they are trivially closed under complement [3], which we rely on in our404

proof. This again demonstrates the importance of having automata for the property and its405

complement, as noted throughout this paper.406

Let us begin by introducing some notation and definitions. Fix some TBA or TMA A =407

(Q,Q0,Σ,X ,∆,Acc). We write (q0, v0) ρ−→A (qn, vn) for a finite timed word ρ = (σ, τ) ∈ TΣ∗
408

to denote the existence of a finite sequence409

(q0, v0) (σ1,τ1)−−−−→ (q1, v1) (σ2,τ2)−−−−→ · · · (σn,τn)−−−−−→ (qn, vn)410

of states, where for all 1 ≤ i ≤ n there is a transition (qi−1, qi, σi, λi, gi) such that vi(c) = 0411

for all c in λi and vi−1(c) + (τi − τi−1) otherwise, and g is satisfied by the valuation412

vi−1 + (τi − τi−1), where we use τ0 = 0.413

▶ Definition 16 (Non-Empty Language States, Reach Set, Pre∗). Let A be a TBA or TMA.414

The set of non-empty language states of A is415

Sne
A = {s | s is a state of A and L(A, s) ̸= ∅}.416

Here, L(A, s) is the set of infinite timed words accepted by a run starting in the state s.417

Given an observation (ρ, t), the set of states in which a run over ρ can end starting from418

the initial states of A after time t has passed is419

TA(ρ, t) =
⋃

q0∈Q0
{(q, v + (t− τ(ρ))) | (q0, v0) ρ−→A (q, v)},420

where v0 is the clock valuation mapping every clock to 0. We call TA(ρ, t) the reach set421

of (ρ, t) in A.422

We define Pre∗
A(S) of a set S of states as423

{(q, v) | (q, v) ρ−→A (q′, v′) for some (q′, v′ + (t− τ(ρ))) ∈ S, ρ ∈ TΣ∗, and t ≥ τ(ρ)}.424

A symbolic state is a pair (q, Z) of a location q and a zone Z. A zone is a finite425

conjunction of clock constraints of the form x1 ∼ n or x1 − x2 ∼ n, where x1, x2 are clocks,426

∼ ∈ {<,≤,=,≥, >}, and n ∈ Q. Such a zone describes a convex set of clock valuations.427

Zones may be efficiently represented using so-called Difference-bounded Matrices (DBM) [11].428

▶ Proposition 17 ([23]). There are zone-based algorithms for the following problems:429

Given a TBA, compute its nonempty language states.430

Given a TBA or TMA A and an observation (ρ, t), compute the reach set TA(ρ, t).431

Given a TBA or TMA A and a finite union S of symbolic states, compute Pre∗
A(S).432

We continue by showing that the non-empty language states can also be computed for433

TMA, relying on an analysis of Alur and Dill’s translation of TMA into equivalent TBA [3].434

Here, we just present the parts of their construction we need to prove our results.435

CONCUR 2025

28:12 Time for Timed Monitorability

▶ Lemma 18. There is a zone-based algorithm that, given a TMA, computes its nonempty436

language states.437

Proof. Fix a TMA A = (Q,Q0,Σ,X ,∆,F). The translation from TMA to TBA relies on438

the fact that L(A) =
⋃

F ∈F L(AF), where AF is the TMA (Q,Q0,Σ,X ,∆, {F}}. Alur and439

Dill translated each such AF into an equivalent TBA A′
F with set Q × {0, 1, . . . , |F |} of440

locations and the same clocks as A. Then, the disjoint union of the A′
F for F ∈ F is a TBA441

that is equivalent to A.442

The TBA A′
F constructed by Alur and Dill satisfy the following fact: L(A′

F , ((q, 0), v)) =443

L(AF , (q, v)) for all locations q of A and all clock valuations. Thus, we have444

Sne
A =

⋃
F ∈F

{(q, v) | ((q, 0), v) ∈ Sne
A′

F
}.445

Hence, we can symbolically compute the non-empty language states of A by symbolically446

computing the non-empty states of the A′
F and then project the states of the form (q, 0) to447

q, but leaving the zones unchanged. ◀448

Using this result, we can decide monitorability.449

▶ Theorem 19. Strong and weak (ρ, t)-monitorability are decidable for properties given by450

DTMA.451

Proof. We assume w.l.o.g. that A is complete in the sense that every word has a run, which452

then must be unique due to determinism. This can always be achieved by adding a fresh453

sink location and by rerouting all missing transitions to it (while preserving determinism).454

Given A, we compute the non-empty language states Sne
A . The complement of the455

non-empty language states is the empty language states, i.e., the set of states for which there456

is no accepting run starting there. Let us denote this set as S∅
A = Sne

A . Using backwards457

reachability, we compute all the possibly-empty language states, i.e., states from which there458

is at least one non-accepting run, i.e., Spe
A = Pre∗

A(S∅
A). Note that S∅

A ⊆ Spe
A . If a state s is459

not in Spe
A , then all states reachable from s have at least one accepting run.460

The sets Sne
A , S∅

A and Spe
A are illustrated in Fig. 5.461

Sne
AS∅

A
Sne

AS∅
A

Figure 5 Representation of all states of an automaton A. On the left, only the empty languages
states S∅

A and non-empty language states Sne
A are shown. On the right, the possibly empty language

states Spe
A are added in gray. The arrows are examples of possible transitions and the dashed arrows

are examples of impossible transitions. A state in S∅
A has no accepting run, thus cannot reach Sne

A .
A state in Sne

A might reach a state in S∅
A. A state outside Spe

A cannot reach S∅
A.

Given an observation (ρ, t), we can compute the reach-set of A over (ρ, t) as TA(ρ, t),462

which is a singleton set, as A is deterministic and complete. Thus, we identify TA(ρ, t) with463

the unique state in it.464

Now, we have TA(ρ, t) ∈ Spe
A if and only if there exists ρ′ ∈ TΣ∗ such that for all µ ∈ TΣω

465

we have ρ ·t ρ′ · µ /∈ L(A). If the latter condition is violated, then monitoring any extension466

of (ρ, t) will not provide the verdict ⊥, i.e., VL(A)(ρ′ ·t ρ′) ̸= ⊥ for all ρ′ ∈ TΣ∗.467

Since DTMA are complementable by changing the acceptance condition, but not the468

set of locations and clocks, we can compute Spe

A
for the complement automaton A of A469

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:13

and provide the dual characterization for the ⊤-verdict: TA(ρ, t) ∈ Spe

A
if and only if there470

exists ρ′ ∈ TΣ∗ such that for all µ ∈ TΣω we have ρ ·t ρ′ · µ ∈ L(A). Again, if the latter471

condition is violated, then monitoring any extension of (ρ, t) will not provide the verdict ⊤,472

i.e., VL(A)(ρ′ ·t ρ′) ̸= ⊤ for all ρ′ ∈ TΣ∗.473

With these characterizations, we can conclude whether the ⊤ or ⊥ verdict are still possible474

for some extensions, which allows us to decide weak (ρ, t)-monitorability: L(A) is weakly475

(ρ, t)-monitorable if and only if TA(ρ, t) ∈ Spe
A ∪Spe

A
. Note that this characterization crucially476

depends on the fact that both A and A have the same states (locations and clock valuations).477

For strong (ρ, t)-monitorability, we need to compute the states that can leave the possibly478

empty states via a finite run: A is strongly (ρ, t)-monitorable if and only if TA(ρ, t) /∈479

Pre∗
A(Spe

A) ∩ Pre∗
A(Spe

A
).480

Due to Lemma 17 and Lemma 18, both characterizations are effectively decidable. ◀481

Due to Remark 12, we also obtain the decidability of strong and weak monitorability.482

▶ Corollary 20. Strong and weak monitorability are decidable for properties given by DTMA.483

5 Monitorability with Step-Bounded Horizons484

Strong monitorability of a property ensures that at any time during monitoring, the observa-485

tion (ρ, t) made so far can be extended by some finite ρ′ such that a conclusive verdict can486

be made after ρ ·t ρ′. Thus, in the setting of strong monitorability, it is always meaningful487

to keep monitoring. In contrast, for weakly monitorable properties, the ability to make a488

conclusive verdict after some future (finite) monitoring is not guaranteed. Ideally, we would489

like to refine the rather uninformative verdict ? with guaranteed minimum bounds on the490

number of future events before a positive or negative verdict can be made. In case both491

these bounds are ∞, further monitoring is useless as the verdicts reported will always be ?.492

Here it is prudent to distinguish between the two definitive verdicts, as they have different493

decidability properties.494

▶ Definition 21 (Weak Monitorability with Step-Bounded Horizons). Fix a property φ ⊆ TΣω,495

an observation (ρ, t), and a bound n ∈ N.496

φ is bounded weakly ⊤-(ρ, t)-monitorable with respect to n if and only if497

there exists ρ′ ∈ TΣ≤n such that Vφ(ρ ·t ρ′) = ⊤.498

φ is bounded weakly ⊥-(ρ, t)-monitorable with respect to n if and only if499

there exists ρ′ ∈ TΣ≤n such that Vφ(ρ ·t ρ′) = ⊥.500

φ is bounded weakly (ρ, t)-monitorable with respect to n if and only if501

there exists ρ′ ∈ TΣ≤n such that Vφ(ρ ·t ρ′) ∈ {⊤,⊥}.502

φ is bounded weakly ⊤-monitorable with respect to n if it is bounded weakly ⊤-(ε, 0)-503

monitorable with respect to n.504

φ is bounded weakly ⊥-monitorable with respect to n if it is bounded weakly ⊥-(ε, 0)-505

monitorable with respect to n.506

φ is bounded weakly monitorable with respect to n if it is bounded weakly (ε, 0)-monitorable507

with respect to n.508

CONCUR 2025

28:14 Time for Timed Monitorability

In the following, we show that bounded weak monitorability and bounded weak ⊤-509

monitorability are undecidable, but that bounded weak ⊥-monitorability is decidable.510

▶ Theorem 22. Bounded weak ⊤-monitorability is undecidable for properties given by TBA.511

Proof. Let φ be a property given by a TBA A. Then universality of A is equivalent to512

bounded weak ⊤-monitorability of φ for the bound n = 0. As universality for timed automata513

is undecidable [3], 0-bounded weak ⊤-monitorability for TBA properties is undecidable. ◀514

Next, we show that weak ⊥-(ρ, t)-monitorability behaves differently.515

▶ Theorem 23. Bounded weak ⊥-(ρ, t)-monitorability is decidable for properties given by516

TBA.517

Proof. Let (ρ, t) be an observation with ρ = (σ1, t1)(σ2, t2) · · · (σm, tm) and let the property518

be given by the TBA A.519

Let π = q0
σ1,λ1,g1−−−−−→ q1 · · · qm+n−1

σm+n,λm+n,gm+n−−−−−−−−−−−−→ qm+n be a syntactic path of lengthm+520

n of the TBA A induced by transitions (qi, qi+1, σi, λi, gi). Also, let τ = {τ1, . . . , τm+n} be521

the set of variables ranging over global time (i.e., R≥0), where τi denotes the time at which522

the i-th transition is taken. Clearly, τi = ti for i = 1, . . . ,m. Most importantly, there is523

a zone Zπ(τ) over τ that precisely captures when (σ, τ) is a timed word realizing π. In524

this case, we may also express the resulting clock valuation after realizing (σ, τ) on π as525

vπ(τ) = (v1
π, . . . , v

k
π), where k is the number of clocks of A and vi

π = τm+n − τℓ(i), with ℓ(i)526

being the index of the last transition when the clock xi was reset. Now, if (qm+n, vπ(τ)) ̸∈ Sne
A ,527

then the run of (σ, τ) following π cannot be extended to an accepting run of A.528

Witnesses for weak monitorability are closed under extensions. Hence, in the following529

construction, we can restrict ourselves w.l.o.g. to words of length exactly n instead of words of530

length at most n. The following formula expresses the existence of a timed word ρ′ = (σ′, τ ′) of531

length n such that all runs on ρ ·tρ′ end in a state outside of Sne
A , witnessing VL(A)(ρ ·tρ′) = ⊥:532

∃τ1 . . . ∃τm+n.

m∧
i=1

τi = ti∧τm ≤ t ≤ τm+1∧

 ∨
σm+1···σm+n∈Σn

∧
π∈SP

(Zπ(τ) → vπ(τ) ̸∈ Sne
A)

 ,533

where SP is the set of syntactic paths of the form534

π = q0
g1,σ1,λ1−−−−−→ q1 · · · gm,σm,λm−−−−−−−→ qm · · · qm+n−1

σm+n,λm+n,gm+n−−−−−−−−−−−−→ qm+n.535

The formula above expresses the existence of values for τ1, . . . , τm+n, with τi = ti for536

i = 1, . . . ,m, and τm ≤ t ≤ τm+1, ensuring that only extensions of the observation (ρ, t) are537

considered. The last part of the formula ensures the existence of a timed word ρ′ = (σ′, τ ′),538

where σ′ = σm+1 · · ·σm+n and τ ′ = τm+1 · · · τm+n, where all runs – which are captured by539

Zπ(τ) – are outside Sne
A . The formula is in the first order theory of real-closed fields, which540

is decidable [33]. Thus, bounded weak ⊥-monitorability is decidable for properties given by541

TBA. ◀542

▶ Remark 24. It follows from Theorem 23 that for properties where both the property and543

its complement are given by TBA, bounded weak monitorability is decidable. Hence, if the544

property is given by a DTMA, then bounded weak monitorability is decidable. Moreover,545

one can even compute the tightest bound n by doing a breadth-first search over the symbolic546

state graph of the deterministic timed automaton, searching for a (shortest) path to the547

empty language states.548

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:15

Lastly, we prove bounded weak monitorability undecidable for properties given by TBA.549

▶ Theorem 25. Bounded weak monitorability is undecidable for properties given by TBA.550

Proof. In the second step of the undecidability proof of weak monitorability (see Theorem 14),551

we have shown how to reduce weak ⊤-monitorability to weak monitorability. The same552

construction reduces bounded weak ⊤-monitorability to bounded weak monitorability, as the553

length of the witnesses is only decreased by removing #’s. ◀554

Due to Remark 12, we also obtain results for the remaining cases.555

▶ Corollary 26. Bounded weak ⊤-(ρ, t)-monitorability and bounded weak (ρ, t)-monitorability556

are undecidable (even for fixed (ρ, t)) while bounded weak ⊥-monitorability is decidable.557

6 Refined Monitoring with Time-Horizon Verdicts558

In the previous section, we have shown that the uninformative verdict ? can be refined by559

checking whether within a bounded number of new observations, a definitive verdict may560

be given. In this section, we again refine the uninformative verdict ? by computing lower561

bounds on the time that needs to pass (independently of the number of events observed562

during that time) before a definitive verdict may be given. Again, if this is infinite, then563

the monitoring process can be stopped, as no amount of waiting will yield a definitive564

verdict. This refinement was introduced and briefly studied as “time predictive monitoring”565

by Grosen et al. [23]. Here we revisit (and rename) this notion by proving computability of566

the time-bounded monitorability for properties given by a DTMA.567

Recall that time passing without any new observed events can nevertheless yield definitive568

verdicts (see, e.g., the last two items in Example 7). Thus, in a practical setting, one is569

interested in intermittently querying the monitoring function even if no events are observed.570

Here, we give lower bounds on the time one should let pass before the next such query is571

made, thereby reducing the computational overhead of these queries.572

▶ Definition 27 (Refined Monitoring with Time-Horizon Verdicts). Given an observation (ρ, t)573

and a property φ ⊆ TΣω, the refined monitoring function Pφ is defined as574

Pφ(ρ, t) =


⊤ if Vφ(ρ, t) = ⊤,
⊥ if Vφ(ρ, t) = ⊥,
(P⊤

φ (ρ, t), P⊥
φ (ρ, t)) otherwise,

575

with576

P⊤
φ (ρ, t) = inf

{
t′ | ρ′ ∈ TΣ∗ such that Vφ(ρ ·t ρ′, t′) = ⊤ and t′ ≥ τ(ρ ·t ρ′)

}
and577

P⊥
φ (ρ, t) = inf

{
t′ | ρ′ ∈ TΣ∗ such that Vφ(ρ ·t ρ′, t′) = ⊥ and t′ ≥ τ(ρ ·t ρ′)

}
,578

where we use the convention inf ∅ = ∞.579

▶ Example 28. Consider the MITL property φ = F[20,40]b. Monitoring the finite timed580

word ρ = (a, 5.1)(c, 21.0)(c, 30.4)(b, 35.1)(a, 40.2) will result in three ? verdicts followed by581

the verdict ⊤ when (b, 35.1) is read. However, we may offer significantly more information,582

e.g., when reading (a, 5.1) it is clear that at least 14.9 time-units must elapse before we can583

give the verdict ⊤, and at least 34.9 time-units must elapse before we can give the verdict ⊥.584

Hence, Pφ((a, 5.1), 5.1) = (14.9, 34.9).585

CONCUR 2025

28:16 Time for Timed Monitorability

▶ Remark 29. Vφ(ρ, t) = ⊤ implies P⊤
φ (ρ, t) = 0 and P⊥

φ (ρ, t) = ∞ and Vφ(ρ, t) = ⊥ implies586

P⊤
φ (ρ, t) = ∞ and P⊥

φ (ρ, t) = 0, but the converse is in general not true. Consider, for587

example, the MITL property φ = F≥0a and the observation ρ = (b, 1). Then, P⊤
φ (ρ, 1) = 0588

(witnessed by ρ′ = (a, 0) for which we have Vρ·tρ′ = ⊤) and P⊥
φ = ∞, but Vφ(ρ, 1) = ?.589

Time-bounded monitorability for an observation (ρ, t) refines weak (ρ, t)-monitorability.590

▶ Lemma 30. Let (ρ, t) be an observation and φ a property. Then, φ is weakly (ρ, t)-591

monitorable if and only if at least one of the values P⊤
φ (ρ, t) and P⊥

φ (ρ, t) is finite.592

Proof. Let φ be weakly (ρ, t)-monitorable, i.e., there is a ρ′ ∈ TΣ∗ such that Vφ(ρ ·t ρ′) ∈593

{⊤,⊥}, say it is ⊤ (the other case is analogous). Then, ρ′ witnesses P⊤
φ (ρ, t) ≤ τ(ρ′), i.e.,594

P⊤
φ (ρ, t) is finite. On the other hand, if (say) P⊤

φ (ρ, t) is finite (the other case is analogous),595

then there is a ρ′ such that Vφ(ρ ·t ρ′) = ⊤. Hence, φ is weakly (ρ, t)-monitorable. ◀596

▶ Theorem 31 (Refined Monitoring is Effective). Pφ is effectively computable, if φ is given597

by a DTMA.598

Proof. When online-monitoring φ over some observation (ρ, t), we compute the reach-599

set TA(ρ, t) and check if it is a subset of the non-empty language states Sne
A or a subset of600

the empty language states S∅
A [23]. Thus, P⊥

φ (ρ, t) is the infimum of the time duration of all601

paths from TA(ρ, t) to S∅
A. This is a time-optimal reachability problem.602

Asarin and Maler [7] introduced the concept of time-optimal strategies for timed game603

automata. Since timed game automata trivially generalize timed automata, we can adapt604

the computation of the optimal time bound to obtain the minimal possible time to reach an605

empty language state from the reach-set. This gives us the value P⊥
A (ρ, t).606

Since DTMA are closed under complement, the same procedure for the complement607

automaton gives us the value P⊤
A (ρ, t). ◀608

As explained in the proof of Theorem 31, monitoring is implemented by keeping track609

of the reach-set of the observation and checking at each update whether it is contained in610

the non-empty language states or in the empty language states. But, as explained in the611

introduction of this section, one should not only update the reach-set when a new event is612

observed, but also intermittently when time has passed.613

For this special case where only time passes, which is covered in Definition 27 by considering614

ρ′ = ε in the infimum, we do not need to solve the expensive time-optimal reachability615

problem described in the proof of Theorem 31. Instead, we rely on zone operations to616

compute δφ(ρ, t) = inf{d | Vφ(ρ, t + d) ∈ {⊤,⊥}}. This is done by exploring all delays617

(removing the upper bounds of the zones) and subtracting the non-empty language states.618

The lower bounds in the zones of the resulting states gives the minimum time a verdict619

can be made by waiting. Now, having observed ρ and the current time being t such that620

Vφ(ρ, t) = ?, querying the monitoring function again without a new observation before time621

t+ δφ(ρ, t) will not yield a different verdict and can thus be avoided.622

7 Related Work623

A formal notion of monitorability was first introduced by Pnueli and Zaks in their work on624

monitoring Property Specification Language (PSL) [29]. In that work, the authors defined625

strong monitorability given a finite prefix, called σ-monitorability, on which we base our (ρ, t)-626

monitorability. From this, Bauer, Leuker, and Schallhart defined the most common definition627

of monitorability, that is strong σ-monitorability from the initial state [10]. They proved628

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:17

that safety and guarantee properties are a proper subset of the class of strongly monitorable629

properties. Later, Chen et al. [13] and Peled and Havelund [28] noticed that there exist630

properties that are not strongly monitorable but still have utility to monitor, and proposed631

equivalent definitions of weak monitorability. Mascle et al. showed the monitorability of632

LTL properties can be improved by considering robust semantics [27]. The term strong633

monitorability has been used before in the context of partially observable stochastic systems634

modeled as Hidden Markov Models. Sistla, Žefran, and Feng first used the term, contrasted635

with (standard) monitorability [32] in their work extending the results of Gondi, Patel, and636

Sistla on monitoring ω-regular properties of stochastic systems [21].637

The complexity of monitorability problems has been studied in other untimed settings.638

Diekert and Leuker proposed a topological definition of strong monitorability, showing that639

problem is equivalent to showing that the boundary in the Cantor topology has an empty640

interior [16]. Diekert, Muscholl, and Walukiewicz later proved that deciding monitorability for641

(untimed) Büchi automata is PSpace-complete [18]. Agrawal and Bonakdarpour proposed642

a definition of monitorability for hyperproperties and determined the monitorable classes643

for their three-valued specification language, HyperLTL [15]. Francalanza, Aceto, and644

Ingolfsdottir characterized monitorable properties of the branching-time µ-Hennessy-Milner645

Logic [19]. This was later extended by Aceto et al. who introduced a hierarchy of monitorable646

fragments of the language [1].647

Attempts have been made to unify these different notions of monitorability. Peled648

and Havelund introduced a classification for properties centered around monitorability [28].649

Kauffman, Havelund, and Fischmeister defined a common notation for strong and weak650

monitorability for different verdict domains [24]. Aceto, Achilleos, and Francalanza provided651

syntactic characterizations of monitorability for classical notions of monitorability as well as652

for a variant of the modal µ-calculus, recHML [2].653

We are aware of only one other work addressing monitorability for real-time properties.654

Amara et al. (very recently) introduced a new linear-time timed µ-calculus, which subsumes655

MTL, and therefore also MITL, and identified its largest monitorable fragment [6]. Their work656

differs from ours in three important respects. First, they rely on a definition of monitorability657

introduced by Schneider as Execution Monitoring Enforceability [31] while we use the more658

typical definition of strong and weak monitorability due to Pnueli and Zaks [29]. Second, they659

introduce a new calculus and characterize its maximal monitorable fragment. We instead660

consider the case of properties expressed as Timed Automata, which lend themselves to661

algorithmic manipulation. Finally, we prove decidability and undecidability results.662

8 Conclusion663

In this work, we have studied monitorability for timed properties specified by either (possibly664

nondeterministic) TBA or by deterministic TMA. In general, we proved monitorability665

decidable for specifications given by deterministic automata and undecidable for specifications666

given by nondeterministic automata. The notable exception here is bounded weak ⊥-667

monitorability, which is even decidable for nondeterministic TBA.668

Also, we provided refinements of monitoring and monitorability making the verdict ?669

more informative by providing bounds on the number of events or the amount of time that670

needs to pass before a conclusive verdict may be given. In practical settings, this is crucial671

information and also allows to optimize the monitoring process in the real-time setting.672

Our decidability proof for monitorability of DTMA relies on the fact that DTMA can673

be complemented without changing the state space. On the other hand, monitorability is674

CONCUR 2025

28:18 Time for Timed Monitorability

undecidable if the property is given by a TBA. Thus, another question for further research675

is to consider strong monitorability when given TBA for the property and for its negation.676

This is a very natural setting, as the specification logic MITL is closed under negation and677

can be translated into TBA. Also, monitoring often requires TBA for both the property and678

its negation [23, 20, 14].679

Acknowledgements. We would like to thank Corto Mascle, who brought Rampersad et680

al.’s work on the complexity of suffix-universality [30] to our attention, which inspired our681

undecidability proof for weak monitorability.682

References683

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.684

Adventures in monitorability: From branching to linear time and back again. In Symposium685

on Principles of Programming Languages (POPL’19), volume 3. ACM, January 2019. doi:686

10.1145/3290365.687

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.688

An operational guide to monitorability with applications to regular properties. Software and689

Systems Modeling, 20(2):335–361, April 2021. doi:10.1007/s10270-020-00860-z.690

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,691

126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.692

4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.693

ACM, 43(1):116–146, 1996. doi:10.1145/227595.227602.694

5 Rajeev Alur and P. Madhusudan. Decision problems for timed automata: A survey. In Formal695

Methods for the Design of Real-Time Systems: International School on Formal Methods for696

the Design of Computer, Communication, and Software Systems, volume 3185 of LNCS, pages697

1–24. Springer, 2004. doi:10.1007/978-3-540-30080-9_1.698

6 Mouloud Amara, Giovanni Bernardi, Mohammed Foughali, and Adrian Francalanza. A699

theory of (linear-time) timed monitors. In 39th European Conference on Object-Oriented700

Programming (ECOOP 2025), volume 333, Bergen (NO), Norway, June 2025. URL: https:701

//hal.science/hal-05043055.702

7 Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed703

automata. In Frits W. Vaandrager and Jan H. van Schuppen, editors, Hybrid Systems:704

Computation and Control, Second International Workshop, HSCC’99, Berg en Dal, The705

Netherlands, March 29-31, 1999, Proceedings, volume 1569 of LNCS, pages 19–30. Springer,706

1999. doi:10.1007/3-540-48983-5_6.707

8 David Basin, Felix Klaedtke, and Eugen Zălinescu. Algorithms for monitoring real-708

time properties. In Runtime Verification, pages 260–275. Springer, 2012. doi:10.1007/709

978-3-642-29860-8_20.710

9 Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time properties.711

In Foundations of Software Technology and Theoretical Computer Science, pages 260–272,712

Berlin, Heidelberg, 2006. Springer. doi:10.1007/11944836_25.713

10 Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and714

TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):14:1–715

14:64, 9 2011. doi:10.1145/2000799.2000800.716

11 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg717

Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri718

Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on719

Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures720

given at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes721

in Computer Science, pages 87–124. Springer, 2003. doi:10.1007/978-3-540-27755-2_3.722

12 Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A723

compositional translation from MITL to timed automata. In Rupak Majumdar and Viktor724

https://doi.org/10.1145/3290365
https://doi.org/10.1145/3290365
https://doi.org/10.1145/3290365
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-540-30080-9_1
https://hal.science/hal-05043055
https://hal.science/hal-05043055
https://hal.science/hal-05043055
https://doi.org/10.1007/3-540-48983-5_6
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-540-27755-2_3

T. M. Grosen, S. Kauffman, K. G. Larsen, M. Zimmermann 28:19

Kuncak, editors, CAV 2017, Part I, volume 10426 of LNCS, pages 421–440, Cham, 2017.725

Springer. doi:10.1007/978-3-319-63387-9_21.726

13 Zhe Chen, Yifan Wu, Ou Wei, and Bin Sheng. Deciding weak monitorability for runtime727

verification. In Int. Conference on Software Engineering (ICSE’18), pages 163–164. ACM,728

2018. doi:10.1145/3183440.3195077.729

14 Alessandro Cimatti, Thomas Møller Grosen, Kim G. Larsen, Stefano Tonetta, and Martin730

Zimmermann. Exploiting assumptions for effective monitoring of real-time properties under731

partial observability. In Alexandre Madeira and Alexander Knapp, editors, SEFM, volume732

15280 of LNCS, pages 70–88. Springer, 2024. doi:10.1007/978-3-031-77382-2_5.733

15 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.734

Rabe, and César Sánchez. Temporal logics for hyperproperties. In Int. Conference on735

Principles of Security and Trust (POST’14), volume 8414 of LNCS, pages 265–284. Springer,736

2014. doi:10.1007/978-3-642-54792-8_15.737

16 Volker Diekert and Martin Leucker. Topology, monitorable properties and runtime verification.738

Theoretical Computer Science, 537:29–41, 2014. doi:10.1016/j.tcs.2014.02.052.739

17 Volker Diekert and Anca Muscholl. On distributed monitoring of asynchronous systems. In740

Logic, Language, Information and Computation, volume 7456 of LNTCS, pages 70–84. Springer,741

2012.742

18 Volker Diekert, Anca Muscholl, and Igor Walukiewicz. A note on monitors and Büchi automata.743

In Theoretical Aspects of Computing - ICTAC 2015, volume 9399 of LNTCS, pages 39–57.744

Springer, 2015. doi:10.1007/978-3-319-25150-9_3.745

19 Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. Monitorability for the Hennessy-746

Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, August 2017.747

doi:10.1007/s10703-017-0273-z.748

20 Martin Fränzle, Thomas Møller Grosen, Kim G. Larsen, and Martin Zimmermann. Mon-749

itoring real-time systems under parametric delay. In Nikolai Kosmatov and Laura Kovács,750

editors, IFM 2024, volume 15234 of LNCS, pages 194–213. Springer, 2024. doi:10.1007/751

978-3-031-76554-4_11.752

21 Kalpana Gondi, Yogeshkumar Patel, and A. Prasad Sistla. Monitoring the full range of753

ω-regular properties of stochastic systems. In Neil D. Jones and Markus Müller-Olm, editors,754

Verification, Model Checking, and Abstract Interpretation, pages 105–119, Berlin, Heidelberg,755

2009. Springer. doi:10.1007/978-3-540-93900-9_12.756

22 Thomas Møller Grosen, Sean Kauffman, Kim G. Larsen, and Martin Zimmermann. Time757

for timed monitorability. arXiv, 2504.10008, 2025. arXiv:2504.10008, doi:10.48550/ARXIV.758

2504.10008.759

23 Thomas Møller Grosen, Sean Kauffman, Kim Guldstrand Larsen, and Martin Zimmer-760

mann. Monitoring timed properties (revisited). In Sergiy Bogomolov and David Parker,761

editors, FORMATS 2022, volume 13465 of LNCS, pages 43–62. Springer, 2022. doi:762

10.1007/978-3-031-15839-1_3.763

24 Sean Kauffman, Klaus Havelund, and Sebastian Fischmeister. What can we monitor over764

unreliable channels? International Journal on Software Tools for Technology Transfer, 23:579–765

600, 06 2021. doi:10.1007/s10009-021-00625-z.766

25 Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of real-time767

systems using uppaal. In Formal Approaches to Software Testing, volume 3395 of LNCS, pages768

79–94. Springer, 2004. doi:10.1007/978-3-540-31848-4_6.769

26 N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Computer,770

26(7):18–41, 1993. doi:10.1109/MC.1993.274940.771

27 Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander Weinert,772

and Martin Zimmermann. From LTL to rltl monitoring: improved monitorability through773

robust semantics. Formal Methods Syst. Des., 59(1):170–204, 2021. URL: https://doi.org/774

10.1007/s10703-022-00398-4, doi:10.1007/S10703-022-00398-4.775

CONCUR 2025

https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1145/3183440.3195077
https://doi.org/10.1007/978-3-031-77382-2_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1007/978-3-319-25150-9_3
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-031-76554-4_11
https://doi.org/10.1007/978-3-031-76554-4_11
https://doi.org/10.1007/978-3-031-76554-4_11
https://doi.org/10.1007/978-3-540-93900-9_12
https://arxiv.org/abs/2504.10008
https://doi.org/10.48550/ARXIV.2504.10008
https://doi.org/10.48550/ARXIV.2504.10008
https://doi.org/10.48550/ARXIV.2504.10008
https://doi.org/10.1007/978-3-031-15839-1_3
https://doi.org/10.1007/978-3-031-15839-1_3
https://doi.org/10.1007/978-3-031-15839-1_3
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1007/s10703-022-00398-4
https://doi.org/10.1007/s10703-022-00398-4
https://doi.org/10.1007/s10703-022-00398-4
https://doi.org/10.1007/S10703-022-00398-4

28:20 Time for Timed Monitorability

28 Doron Peled and Klaus Havelund. Refining the safety–liveness classification of temporal776

properties according to monitorability. In Models, Mindsets, Meta: The What, the How, and777

the Why Not? Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday,778

volume 11200 of LNCS, pages 218–234. Springer, 2019. doi:10.1007/978-3-030-22348-9_14.779

29 A. Pnueli and A. Zaks. PSL model checking and run-time verification via testers. In Jayadev780

Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, pages 573–586,781

Berlin, Heidelberg, 2006. Springer. doi:10.1007/11813040_38.782

30 Narad Rampersad, Jeffrey O. Shallit, and Zhi Xu. The computational complexity of univer-783

sality problems for prefixes, suffixes, factors, and subwords of regular languages. Fundam.784

Informaticae, 116(1-4):223–236, 2012. doi:10.3233/FI-2012-680.785

31 Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,786

February 2000. doi:10.1145/353323.353382.787

32 A. Prasad Sistla, Miloš Žefran, and Yao Feng. Monitorability of stochastic dynamical systems.788

In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification, pages789

720–736, Berlin, Heidelberg, 2011. Springer.790

33 Alfred Tarski. A decision method for elementary algebra and geometry. In Bob F. Caviness and791

Jeremy R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition,792

pages 24–84, Vienna, 1998. Springer Vienna.793

34 Prasanna Thati and Grigore Roşu. Monitoring algorithms for metric temporal logic spe-794

cifications. Electronic Notes in Theoretical Computer Science, 113:145–162, 2005. doi:795

10.1016/j.entcs.2004.01.029.796

https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38
https://doi.org/10.3233/FI-2012-680
https://doi.org/10.1145/353323.353382
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029

	1 Introduction
	2 Preliminaries
	3 Monitoring and Monitorability for TBA
	4 Monitorability for DTMA
	5 Monitorability with Step-Bounded Horizons
	6 Refined Monitoring with Time-Horizon Verdicts
	7 Related Work
	8 Conclusion

