Visualizing Temporal Interval Hierarchies

Nafiz Sadman[0000_0001_6784_0029], Nastaran Kianersi[0009_0009_5005_9645], and
Sean Kauﬁman[0000_0001_6341_3898]

Queen’s University, Kingston, Canada
{sadman.n,nastaran.kianersi,sean.k}@queensu.ca

Abstract. We introduce a method for visualizing the temporal inter-
vals output by nfer, a language and tool for event trace comprehension.
Visualizing these intervals is challenging because they may be arbitrar-
ily nested in a hierarchy and because multiple intervals with the same
identifier may occur concurrently. Our tool, nvis, solves these problems
to present the output of nfer in a human interpretable, interactive web
interface. We introduce an algorithm to solve the hierarchy and con-
currency problem, and present a case study using automatically learned
rules from our industrial partner.

1 Introduction

Nfer is a language and tool for event trace comprehension, designed to process
logs from spacecraft and other systems and transform them into more easily con-
sumable abstractions [10, 8, 9]. These logs contain discrete timestamped events,
possibly carrying data, that describe state changes, such as a function call or
device interrupt. Nfer allows for temporal reasoning over such events by ap-
plying human- or machine-written [6] rules to them to generate a hierarchy of
labeled time-intervals. The intervals can then be used by other programs or peo-
ple to understand how the system has behaved. Nfer’s syntax is loosely based on
Allen’s Temporal Logic (ATL) [3], which is widely used for automated planning,
making it easy to adopt.

For humans to use nfer for event trace comprehension, the hierarchy of in-
tervals it produces must be visualized. However, displaying the output of nfer
comes with a unique set of challenges because of its hierarchical and concurrent
nature. Nfer intervals can have positive duration, meaning they label some pe-
riod of time. However, since these labeled intervals can also carry data, arbitrary
numbers of intervals with the same identifier can label the same period, creating
a problem of overlap. Additionally, each interval is the result of a fixed-point
computation on other intervals, which it does not reference explicitly. Determin-
ing precisely which intervals are part of the hierarchy responsible for an interval
is both highly interesting to users and undecidable in general [12].

While many tools visualize logs of events, no other tools we are aware of
handle the two problems of concurrency and hierarchy that nfer output presents.
For example, Shviz [5] displays interactive communication graphs where there is
some notion of concurrency, but where events (the elements to be displayed) have

no duration and cannot be nested in a hierarchy. Similarly, Tracy [14] visualizes
the results of declarative rules applied to label events, but also lacks the same
problems with concurrency and hierarchy.

In this work, we introduce algorithms and a tool, nvis, to efficiently visualize
nfer output. In Section 2 we explain the problem in more detail and introduce a
through-example. Then, Section 3 describes the algorithms that solve both the
concurrency and hierarchy problems. Section 4 introduces the tool using a case
study, and Section 5 concludes the paper.

2 Problem

The greatest challenges of displaying the intervals that nfer outputs come from
their overlapping nature and their hierarchical structure. To explain these phe-
nomena, we now describe the nfer language in more detail.

The nfer tool applies the rules to an event trace to produce labeled intervals.
In this case, an event (7,t, M) is a triple where n € Z is one of a finite set of
identifiers labeling what occurred, ¢ € N is a timestamp representing when the
event happened, and M is a partial function M : Z + N mapping identifiers to
numbers. An event trace is a finite sequence of events. The output of nfer is a
set of intervals. An interval i = (n,s,e, M) € I is similar to an event, but with
two timestamps s,e € N , s < e representing the start and end timestamps of
a behaviour over time. We also define accessor functions id(i) = n, start(i) = s,
and end(i) = e. Although the input to nfer is an event trace, we treat events
(n,t, M) as intervals with zero duration (n,¢,t, M), called atomic intervals.

Nfer rules, then, transform sets of atomic intervals into a set of intervals
with potentially positive duration. Nfer rules relate these intervals using tem-
poral relations inspired by ATL [3]. Allen formalized his algebra (ATL) after
arguing that an interval-based notion of time was more natural than a point-
based system [4]. That is, intervals that represent state are easier to reason about
than events that represent state transitions.

An nfer rule n + X has two parts: the right-hand side () matches pairs
of existing intervals by comparing their timestamps and data maps, and the
left-hand side (n) is an identifier that labels the resulting intervals. Note that
the timestamps and data map of the resulting intervals are determined by the
right-hand side, but the details of this are beyond the scope of this work [8,9, 11,
12]. Where necessary, we will give the intuition behind the rule semantics and
otherwise rely on the reader to follow the relatively human-readable notation.

One important detail is the difference between inclusive and exclusive rules.
Inclusive rules take the form 7 < 71 op 72 and match pairs of existing intervals
with identifiers equal to 1; and 7, where their timestamps satisfy a temporal
constraint specified by the operator “op.” The intervals produced by these rules
have timestamps that depend on both the matched intervals and the temporal
constraint. Alternatively, exclusive rules take the form n < 7; unless op 7
and match an existing interval with identifier 777 where there does not ezist an

interval with identifier 7, matching the temporal constraint specified by “op.”
The intervals produced by these rules depend only on the extant interval.

Ezample 1. Here, we present a simple example of applying nfer to abstract an
event trace. Suppose an embedded system that produces events on system calls
and returns, such as from the QNX Tracelogger utility or Linux’s ftrace. The
system produces events with the following labels: Z = { IRQ, IRQRET, TASK }
where IRQ represents an interrupt firing, IRQRET represents it returning, and
TASK represents a task being scheduled.

The following nfer rule labels the intervals between an IRQ event and an
IRQRET having the same n (number) with the label “interrupt”:

interrupt « IRQ before IRQRET where m1, mg — mi(n) = ma(n) map @

Note that the map part of the rule is empty here, because we have not specified
any data to assign to the resulting interval. If the rule is applied to the events
(IRQ,1,1,{n — 9})(TASK, 5,5, {id — 19})(IRQRET, 10, 10, {n — 9}), it pro-
duces the interval (interrupt, 1,10), where the identifier “interrupt” comes from
the left-hand side of the rule, 1 comes from the IRQ event with n = 9, and 10
from the IRQRET event with n = 9.

A second rule might label interrupts that schedule a task, and capture the
task id that was scheduled:

schedule +~ TASK during interrupt where @ map my, mg — {id — m;(id)}

If this rule is applied in addition to the rule above, it produces the interval
(schedule, 1,10, {id — 19}) because it matches a TASK event from the original
trace and the interrupt interval produced by the other rule. To see how this
creates a unique challenge for visualization, suppose that two other events oc-
cur in the same trace: (IRQ, 4,4, {n — 7})(IRQRET, 12,12, {n — 7}). Applying
the above rules results in two additional intervals to the two we already saw:
(interrupt, 4,12) and (schedule, 4,12, {id — 19}). The interrupt interval is pro-
duced because the two new events have matching n values and so are matched
by the interrupt rule, and the schedule rule is matched because the TASK event
also occurs during the new interrupt interval.

There are two challenges inherent in displaying these new intervals: overlap
and hierarchy. The four intervals that were produced in the example all overlap
from time points 4 to 10, with two intervals produced by each rule with the
same identifiers. Indeed, the number of possible intervals at any given point,
even without recursion, is 22" in the number of events [11,12]. The hierarchy is
also unclear directly from the produced intervals, since both schedule intervals
share the same TASK event but themselves have different timestamps (inherited
from the different interrupt intervals).

3 Solution

We present a methodology to address hierarchical and overlapping intervals by
dividing the period of the trace into segments (bucketing) where the number of

intervals in a segment defines the shade of its color, and an over-approximation
of the hierarchy is derived by ignoring data. Throughout this section, we use I
and O to describe the input and output of nfer respectively, where I, O C I and
I consists only of atomic intervals.

We first group the intervals in I and O by time segment to resolve the overlap-
ping problem. To group by segment, we first divide the period of the input into [
equal-length, non-overlapping bins from min, <;<|7| start(1;) to max; <<z end(I;),
0, - --0,. For each time segment, we associate an interval when its time overlaps
with that segment. For example, consider two subsequent time segments 6;,0;
where 3s,m,e € N such that §; = (s,m] and 6; = (m,e]. For some interval
o € O, we associate it with 6; if start(o) < m and end(o) > s and with §; if
start(o) < e and end(o) > m. In other words, the algorithm includes each in-
terval in a segment if any part of the interval intersects with the period of the
segment. This grouping allows visualizing overlapping intervals by shading the
segment based on the interval count. The complexity of this bucketing algorithm
is O(|0]), since one can derive the segment given the start and end timestamps
of a trace, the number of segments, and a timestamp of interest.

We illustrate the bucketing procedure for Example 1 in Figure 1. With three
segments of length four, the leftmost segment has one schedule and interrupt
interval, while the other two segments include two of each interval since all four
intervals intersect those segments.

schedule} id = 19

interrupt
schedule, id = 19
interrupt
7 TASK,n = 19 IRQRET, n =9 IRQRET,n =7

0 1 2 3 4 5 6 7 8 9 10 11 12
Timestamps

Fig. 1: Bucketing the intervals from Example 1.

The second objective is to solve hierarchical intervals. Finding the precise
hierarchy of intervals that led to the creation of a specific interval is undecid-
able [12], so we introduce a complete but not sound method of computing the
hierarchy (an over-approximation) that only considers temporal relations. We
believe that, in practice, there are not many examples where uncertainty exists
over which interval was used, i.e., there are not many cases where more than
two parents will be found. We would rather show users all options and let them
decide what is meaningful instead of omitting possibly correct choices.

We now give an algorithm to find valid parents for an interval. An interval
p € TUO is a valid parent for a given child interval ¢ € O iff there exists
a rule n < X in the set of rules A where id(c) = 7 and the timestamps of
p and c satisfy the temporal constraints of A. This ignores the data map for
the purpose of defining the hierarchy, which results in unsound parents being
included, transforming the problem to evaluation of the data-free fragment of
nfer, which is in PTime [7].

We define predicates MATCHy, : O — I x N x N — B for k € {L, R} (Left,
Right) where Q is the set of the 8 inclusive nfer operators {before, meet,
coincide, during, start, finish, overlap, slice} [9] and B = {true, false}. For
MATCHy, (0p) (4, s,€e), @ € I is a possible parent interval, and s,e € N are times-
tamps of the given child interval. The parameter k € {L, R} represents the “side”
of the operator. The predicates hold if 7 satisfies the temporal constraints of op for
the k side of the operator. For example, MATCH/,(before) (i1, s,e) = start(i;) =
sAend(i1) < e and MATCHR(before)(ia, s,e) = start(iz) > sAend(i) = e. These
predicates are defined based on the temporal operators from nfer [8,9,11,12]
in a straightforward way, so we do not repeat the definition here.

Algorithm 1 Processing Rule Associations

1: procedure HIERARCHY((7, s, e, M)) > Argument is an interval
2 parents = &

3 form <~ Ae A, m =ndo > Loop over rules with n on LHS
4 if A € Z then > If rule is atomic
5: parents = FINDPARENTS(coincide, L, A, s, ¢)

6 else if A =71 op 72 then > If rule is inclusive
7 parents = FINDPARENTS(op, L, 71, s,e) U FINDPARENTS(op, R, 72, s, €)

8 else if A = n; unless op 72 then > If rule is exclusive
9 parents = FINDPARENTS(coincide, L, 11, s, €)

10: return parents

11: procedure FINDPARENTS(op, k, 7p, S, €)
12: parents = &

13: for i € TUO : id(i) = np, A MATCH(0p)(3, s, €) do > Loop over intervals
14: parents <— parents U {i}

15: if i € O then

16: parents <— parents U HIERARCHY () > Recurse if parent is not input
17: return parents

Ezample 2. We now revisit the rules and intervals from Example 1 to explain
Algorithm 1. Our goal is to determine the hierarchy that produced the interval
x = (schedule, 1,10, {id — 19}). We call the function HIERARCHY with z. For
this example, n = schedule, s = 1, ¢ = 10 and the map M is ignored. In Algo-
rithm 1, I, O, and A are considered globally accessible to simplify presentation.

In Line 3, we search the rules 1; < A € A that produce 7. A can be either
an atomic rule, consisting of only an identifier in Z or a combination of two

identifiers 1y, 72 with an nfer operation (note that we ignore the map part of
rules). If X is atomic (i.e., A € Z), we satisfy the condition in Line 4, otherwise
we either satisfy Line 6 for inclusive rules or Line 8 for exclusive rules [12].
In our example, we search the rules until finding the rule from Example 1
where the left-hand side is “schedule”. The right-hand side for the rule (ignoring
the map) is TASK during interrupt, an inclusive rule (Line 6). We then call
PARENTS(during, L, TASK, 1, 10) and PARENTS(during, R, interrupt, 1, 10).

The first call, with 7, = TASK, searches JUO for an interval with a matching
identifier that meets the temporal constraint specified by MATCH[, (during)(i, s, e) =
start(i) > s A end(i) < e. This is satisfied by i; = (TASK,5,5,{id — 19})
and since i3 € I (not O), it is added to parents and we return. The sec-
ond call to PARENTS, with 7, = interrupt, searches for intervals that meet
MATCHR(during) (i, s, e) = start(i) = sAend(i) = e, met by i2 = (interrupt, 1, 10).
Since io € O, we then recurse, calling HIERARCHY on it.

The recursive call searches for rules that produce interrupt intervals, yield-
ing the other rule from Example 1. The right-hand side IRQ before IRQRET
is again an inclusive rule, yielding calls to PARENTS(before, L, IRQ, 1, 10) and
PARENTS(before, R,IRQRET, 1, 10). Although Example 1 includes two copies
of both events, Algorithm 1 will choose the correct ones because of the tem-
poral constraints MATCHy (before) we defined earlier: (IRQ, 1,1,{n — 9}) and
(IRQRET, 10,10, {n — 9}).

Theorem 1 (Algorithm 1 Completeness). Given an interval i € IUO and
its ancestors A C I UO from applying the rules in A, HIERARCHY(i) N A = A.

Proof. We give a proof sketch using induction. For the base case, choose any
i € I (A = o). The induction hypothesis is that if a recursive call to HIERARCHY
contains all ancestors of a parent, then the algorithm will find all parents and
their ancestors. Any parent must appear in I U O, there must be a rule that
matches it, and the predicate MATCH must hold by definition. a

4 Nvis: Design and Case Study

In this section, we detail the design of nvis, our tool to visualize hierarchical and
overlapping intervals. The back-end processing server is scripted with Python’s
asynchronous HTTP package [2]. We use HTML and D3.JS to render front-end
visualizations, and connect the client-server with Python’s SocketIO package [1].
The code is publicly available on GitHub [13].

We present an overview of our tool in Figure 2. The data visualized in the
figure is from the case study presented below. Each interval identifier is also
uniquely color-coded to clearly differentiate the intervals. The shade of the color
in each segment is dependent on the number of corresponding intervals in the
segment; the darker the shade of the interval segment, the more times an interval
occurred within that segment.

To illustrate the practical application of nvis, we visualize the logs generated
by a Mitsubishi heat pump obtained from our industrial partner Cedar Heat.

426
d29
d 32

> o © o © © o © ©o o © 0 O © O O © O O © © O O O ©°

|
[T

Fig. 2: Overview of nvis, our tool to visualize temporal intervals.

These logs contain key-value pairs of system-related information such as run
time and baud rate, as well as physical quantities measured by sensors, e.g.,
temperature and power consumption. Each monitored value is associated with
a timestamp, forming a time series. To prepare this case study, we first mapped
the time series to an event trace through a discretization step. Then, we used
the rule mining feature of nfer [6] to extract temporal relations between the
events in the trace, and applied the rules to the trace, again using nfer, to
obtain the intervals. Because they are mined, each rule is labeled with a generic
identifier in the format ‘learned_id’, where ‘id’ is an incremental counter. This
example demonstrates a case where no context is provided with the rules as
nfer and similar rule mining tools adopt an abstract approach to rule mining.
Although this represents an extreme case, nvis remains useful when rules are
defined manually and carry meaningful identifiers.

Pattern A in Figure 2 is an example of intervals appearing successively, pos-
sibly indicating causal relationships between the events. In Pattern B, however,
multiple rules apply simultaneously, revealing concurrent system behavior. This
visual representation facilitates an intuitive understanding of the underlying sys-
tem behavior by allowing users to easily observe overlapping activities and se-
quential dependencies.

5 Conclusion

We presented a method to visualize overlapping intervals from nfer, allowing
pattern analysis in a human-interpretable setting. The method buckets intervals
into time segments, each with its own count of occurrence. We proposed nvis,
a visualization tool that depicts unique colors for each interval, and the shade
of each color is based on the count of intervals occurring in each segment. This
allows visualization of overlapping intervals. We also proposed an algorithm to
recursively find interval hierarchies and extract valid parents producing a specific
interval. Finally, we demonstrated nvis on an industrial case study, visualizing
concurrent and sequential intervals and revealing informative patterns.

References

10.

11.

12.

13.

14.

. Python socketio, https://python-socketio.readthedocs.io/en/stable/, ac-

cessed: 2024

Welcome to aiohttp - aiohttp 3.11.11 documentation, https://docs.aiohttp.org/
en/stable/, accessed: 2024

Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832-843 (1983)

Allen, J.F.: Towards a general theory of action and time. Artificial intelligence
23(2), 123-154 (1984)

Beschastnikh, 1., Wang, P., Brun, Y., Ernst, M.D.: Debugging distributed systems:
Challenges and options for validation and debugging. Communications of the ACM
59(8), 32-37 (Aug 2016)

Kauffman, S., Fischmeister, S.: Mining temporal intervals from real-time system
traces. In: International Workshop on Software Mining (SoftwareMining’17). pp. 1—
8. IEEE (2017). https://doi.org/10.1109/SOFTWAREMINING.2017 . 8100847
Kauffman, S., Guldstrand Larsen, K., Zimmermann, M.: The complexity of data-
free nfer. In: International Conference on Runtime Verification (RV’24). pp. 1-16.
Springer (10 2024). https://doi.org/10.48550/arXiv.2407.03155

Kauffman, S., Havelund, K., Joshi, R.: nfer-a notation and system for inferring
event stream abstractions. In: International Conference on Runtime Verification
(RV’16). LNCS, vol. 10012, pp. 235-250. Springer (2016). https://doi.org/10.
1007/978-3-319-46982-9_15

Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream
abstractions. Formal Methods in System Design 53, 54-82 (2018). https://doi.
org/10.1007/s10703-018-0317-z

Kauffman, S., Joshi, R., Havelund, K.: Towards a logic for inferring properties of
event streams. In: International Symposium on Leveraging Applications of Formal
Methods (ISoLA’16). LNCS, vol. 9953, pp. 394-399. Springer (2016). https://
doi.org/10.1007/978-3-319-47169-3_31

Kauffman, S., Zimmermann, M.: The complexity of evaluating nfer. In: Interna-
tional Symposium on Theoretical Aspects of Software Engineering (TASE’22).
LNCS, vol. 13299, pp. 388-405. Springer (07 2022). https://doi.org/10.1007/
978-3-031-10363-6_26

Kauffman, S., Zimmermann, M.: The complexity of evaluating nfer. Science of
Computer Programming 231 (2024). https://doi.org/10.1016/j.scico.2023.
103012

Sadman, N., Kianersi, N., Kauffman, S.: Github, https://github.com/Nafiz95/
Nvis, accessed: 2024

Zamfirov, F., Dams, D., Seraj, M., Serebrenik, A.: Encoding domain knowledge
in log analysis. In: 40th IEEE International Conference on Software Mainte-
nance and Evolution. pp. 224-236. IEEE (Oct 2024). https://doi.org/10.1109/
ICSME58944.2024.00030

