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Abstract. We report our experience in applying runtime monitoring6

for a continuous deployment process. Many modern web applications are7

automatically deployed via continuous deployment (CD). If a deployment8

process is not successful, an old version of the software will be kept in use,9

and, for instance, a vulnerability may remain in the running software.10

To confirm that a new version of software is successfully deployed, we11

applied runtime monitoring to a continuous deployment process. Our12

target system consists of GitHub Actions, GitHub Container Registry13

(GHCR), FluxCD, and an application running on Kubernetes. Through14

the case study, we find that the deployment action does not always occur15

within five minutes after image creation, whereas it always occurs within16

ten minutes. Moreover, our results show that the monitoring tool SyMon17

we used is efficient enough to monitor the CD process in real time.18

Keywords: Runtime verification · Symbolic monitoring · Continuous19

deployment · Image deployment20

1 Introduction21

Modern web applications are usually deployed using containers. A container is a22

lightweight virtual environment. By deploying an application along with a con-23

tainer, it enables seamless server setup, as the container includes all required li-24

braries, runtime environments, and configurations. Application developers build25

an image and then deploy it to production environments in the form of a con-26

tainer.27

At the same time, Continuous Deployment (CD) is gaining attention. CD is a28

software development strategy in which code changes are automatically deployed29

to the production environment. It enables rapid and safe deployment. CD can30

be divided into the following two processes.31

1. Building Phase: Build an image from the source code.32

2. Deployment Phase: Create a container based on the built image.33

There are three main ways in which the second step can be triggered after34

the first step is completed.35

– Manually start the deployment.36
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– Trigger the deployment immediately after the image build is completed.1

– Periodically poll the container image registry, and deploy the image when a2

new version is found.3

Tools such as FluxCD [2] and ArgoCD [1], which run in the Kubernetes [9] en-4

vironment, operate based on the third approach. However, this method presents5

a challenge. Because the deployment process is triggered asynchronously after6

the image is built, it becomes important to confirm that the new image has actu-7

ally been deployed. Failure to deploy the new image can cause serious problems.8

For example, if a security patch is built into a new image but the image is not9

deployed due to an unforeseen error, the vulnerability may remain in production10

for an extended period, potentially leading to critical security breaches.11

In this paper, we report our experience in applying runtime verification for12

CD processes to detect unexpected behavior. Specifically, we monitored the log13

of a CD process based on FluxCD using a monitoring tool, SyMon [16]. The14

monitoring results show that the deployment action does not always occur within15

five minutes after image creation, whereas it always occurs within ten minutes.16

Moreover, our results show that SyMon is efficient enough to monitor the CD17

process in real time.18

2 Related work19

Continuous Integration (CI) mechanism is widely used to verify deployed appli-20

cations [13,14,17], but to the best of our knowledge, there are no examples of21

verification of the CD system itself.22

It is common practice to use application metrics to monitor whether the sys-23

tem is running properly [7,8,10,15,18]. However, we have not found any examples24

of confirming that the CD system is functioning properly by monitoring whether25

the output logs meet the expected time constraints.26

Amethod for statically verifying Kubernetes behavior has been proposed [12].27

However, this method only verifies the behavior of deploying Kubernetes pods28

and cannot be used to verify the behavior of the entire CD system. A mechanism29

for monitoring Kubernetes events in real time and detecting abnormal behavior30

has also been proposed [11], but no examples of monitoring whether the system31

meets specific time constraints have been found.32

3 Symbolic monitoring with SyMon33

SyMon [16] is a tool for symbolic monitoring of timed data words against para-34

metric timed data automata (PTDAs). A timed data word is a timed word [3]35

equipped with infinite domain data (e.g., strings and numbers) that represent,36

for instance, identifiers or sensed values. Specifically, a timed data word is a37

sequence of (finite domain) events associated with infinite domain data and38

timestamps. Listing 1 shows a concrete timed data word that SyMon can han-39

dle, where the set of events is {create, fetch}. Each line in Listing 1 represents40
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1create auth -backend stg -7 c03f5241c93d6e77bb132d8ea9ffe9e59e7b62d -1445 171982
2fetch auth -example stg -379 cca639565f93fe2485c6f443b1d5b45285534 -1441 172084
3fetch auth -example stg -379 cca639565f93fe2485c6f443b1d5b45285534 -1441 172085
4create auth -frontend stg -7 c03f5241c93d6e77bb132d8ea9ffe9e59e7b62d -1445 172140
5fetch auth -frontend stg -7 c03f5241c93d6e77bb132d8ea9ffe9e59e7b62d -1445 172146

Listing 1: A log compatible with SyMon. Each line represents an event equipped
with infinite domain data and a timestamp. The first column shows the event,
the second column shows the package name, the third column shows the package
tag, and the fourth column shows the timestamp.

an event associated with two string values representing the package name and1

package tag (second and third columns), and a timestamp (fourth column).2

PTDAs are a generalization of parametric timed automata [4] (which extend3

timed automata [3] with parameters in timing constraints) to handle infinite4

domain data. Informally, a PTDA is an NFA equipped with clock variables and5

data variables to represent constraints on the time gap between events and the6

infinite domain data on events, respectively. More specifically, each transition of7

a PTDA is labeled with parametric constraints and updates on clock and data8

variables. See [16] for the details of PTDAs.9

The semantics of PTDAs is defined with respect to valuations of the timing10

and data parameters in the constraints. Namely, the parametric constraints in11

a PTDA are instantiated with the parameter valuations, and its language is12

defined based on the instantiated concrete constraints. Given a timed data word13

w and a PTDA A, SyMon returns the prefixes of w accepted by A along with14

the corresponding set of parameter valuations η. Thanks to the parameters, one15

can formulate a PTDA A with unknown values, and SyMon can detect the16

acceptance of prefixes of w along with the concrete instance of the unknown17

values. For example, one can represent a violation of certain requirements for18

some identifier of interest as a PTDA and use SyMon to detect its violation and19

obtain the concrete identifier for each detected violation.20

In addition to PTDAs, SyMon supports a high-level specification language21

defined based on timed regular expressions [6]. Listing 2 shows an example. In22

this expression, two kinds of events (“create” and “fetch”) and two parameters23

over strings (“current name” and “current tag”) are used. To concisely define24

the main expression, four subexpressions (“ignore any”, “ignore irrelevant”,25

“correct”, and “failed”) are defined. SyMon constructs a PTDA from a high-26

level expression and performs monitoring using it. In our case study, we only27

use this high-level expression rather than PTDAs. The details of the high-level28

expression are omitted.29
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1#!/ usr/local/bin/symon -dnf
2var {
3 current_name: string;
4 current_tag: string;
5}
6signature create {
7 name: string;
8 tag: string;
9}

10signature fetch {
11 name: string;
12 tag: string;
13}
14expr ignore_any {
15 zero_or_more {
16 one_of {
17 create(name , tag)
18 } or {
19 fetch(name , tag)
20 }
21 }
22}
23expr ignore_irrelevant {
24 zero_or_more {
25 one_of {
26 create(name , tag | name != current_name || tag != current_tag)
27 } or {
28 fetch(name , tag | name != current_name || tag != current_tag)
29 }
30 }
31}
32expr failed {
33 create(name , tag | name == current_name && tag == current_tag);
34 within (>300) {
35 zero_or_more {
36 one_of {
37 ignore_irrelevant
38 } or {
39 create(name , tag | name == current_name && tag == current_tag

)
40 }
41 };
42 one_of {
43 create(name , tag)
44 } or {
45 fetch(name , tag)
46 }
47 }
48}
49ignore_any;
50failed

Listing 2: SyMon’s specification
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Fig. 1: Outline of the target system. Events observed by the monitor correspond
to the actions shown by thick arrows.

4 Case study1

4.1 Target system2

We monitored a CD system shown in Fig. 1. The system consists of GitHub Ac-3

tions, GitHub Container Registry (GHCR), FluxCD, and an application running4

on Kubernetes. Application developers first push the application’s source code5

to GitHub. GitHub Actions then automatically starts, builds an image based on6

the source code, and pushes that to GHCR. FluxCD regularly polls the Image7

Registry, and when it finds a new image, it updates the image of the application8

running on Kubernetes.9

The logs output from the CD system components were used to confirm that10

the expected time constraints were met. Two types of logs were collected: the11

first is the Building Phase log, which indicates that the image was pushed to12

GHCR; the second is the Deployment Phase log, which indicates that FluxCD13

accesses GHCR to see if the image is updated.14

We collected the first log as follows. When an image is pushed to GHCR,15

GitHub’s webhook feature notifies an external API server of the event. We cre-16

ated a Registry Monitor to receive the webhooks. When receiving a webhook17

request, it prints to standard output a log of the images that were pushed. The18

log is output in JSON format and includes the package name and tag name as19

shown in Listing 3.20

21

{22

"time ":"2025 -07 -02 T02 :50:46.42462649Z",23

"package_name ":"auth -frontend",24

"package_tag ":25

"stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458"26

....27

}28
29

Listing 3: Log indicating that an image has been pushed
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The second log is obtained from the FluxCD component: the FluxCD system1

periodically polls the image registry and outputs the information of the latest2

images. The log is output in JSON format as shown in Listing 4, with the package3

and tag names included in the msg field statement.4

5

{6

"level ":" info",7

"ts":"2025 -07 -03 T07 :06:59.990Z",8

"msg":" Latest image tag for9

ghcr.io/piny940/auth -frontend resolved to10

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458..." ,11

...12

}13
14

Listing 4: Log of FluxCD polling GHCR

We preprocessed these logs and converted them to a format compatible with15

SyMon. The logs after pre-processing are shown in Listing 1. Specifically, we16

performed the following three pre-processing steps.17

1. write labels indicating the type of logs: “create” for logs indicating that an18

Image has been pushed, and “fetch” for logs of FluxCD polling GHCR19

2. extract package name and tag name from the log20

3. convert timestamp to UNIX time21

4.2 Specification22

We tested whether FluxCD detects image updates within five minutes and within23

ten minutes after they are pushed to GHCR. We used SyMon’s specification24

shown in Listing 2.25

Lines 2 through 5 of the specification declare variables for specifying the26

name and tag to be monitored. Only events that match these values are focused27

on. Lines 6 through 13 define create and fetch as log events. The “ignore any”28

defined in lines 14 through 22 means that any number of “create” or “fetch”29

events can occur. This is written to ignore harmless parts of the event sequence.30

Lines 23 to 31 define “ignore irrelevant”, which is written to ignore “create”31

or “fetch” events that do not match “current name” or “current tag” as32

‘irrelevant events’. Lines 32 to 48 define “failed”, which is the main body of33

this specification, i.e., the anomaly to be detected. The content is represented in34

the following three steps.35

1. A create event occurs(l33).36

2. Only events other than fetch that match name and tag in “current name”37

and “current tag” occur, and 300 seconds pass(l35-l41).38

3. Some event occurs(l42-l46).39

Lines 49 and 50 state, ‘Detect if “failed” occurs after “ignore any”.’40
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Table 1: Time taken to execute SyMon

Number of Days Number of Entries Execution Time(ms)

5 12758 360
10 25223 376
15 41151 398

4.3 Results and discussions1

We checked if the system’s behavior met the specification mentioned in Sec-2

tion 4.2. We used five-day logs. There were 12758 log entries and 12 “create”3

logs were included. Logs used for benchmarking are available on GitHub [5].4

When tested with the specification “within five minutes”, we found five logs5

that did not meet the constraint, as shown in Listing 5. This indicates that6

the deployment was not always done within five minutes after the image was7

pushed. It should be noted that multiple “fetch” logs were detected for the same8

“create” log. On the other hand, when tested with the specification “within ten9

minutes”, all logs met the constraint. This means that the deployment always10

occurred within ten minutes.11

12
1@1751425023.000000. (time -point 9443) x0 == auth -frontend x1 ==13

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458 true14

2@1751425023.000000. (time -point 9443) x0 == auth -example x1 ==15

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458 true16

3@1751425050.000000. (time -point 9444) x0 == auth -example x1 ==17

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458 true18

4@1751425050.000000. (time -point 9444) x0 == auth -frontend x1 ==19

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458 true20

5@1751425052.000000. (time -point 9445) x0 == auth -example x1 ==21

stg -9 c8f5e28c2c7d78da2648f5eaa62216038cbd1fd -1458 true2223

Listing 5: output of SyMon

We also measured the time it takes to run SyMon against 5, 10, and 15 days24

of logs and evaluated the time it takes to run the test. The time taken to execute25

SyMon is shown in Table 1. It took 360 milliseconds to check 12758 logs for five26

days. For comparison, we ran a test on 25223 log entries for ten days and 4115127

log entries for 15 days, and it finished in 376 and 398 milliseconds, respectively.28

This indicates that execution time remains within a realistic time frame even as29

the number of logs increases.30

5 Conclusions and perspectives31

In this paper, we used SyMon to confirm that the CD system operates according32

to the specifications. The event logs showed that the deployment was not always33

done within five minutes after image creation. On the other hand, it always34

occurred within ten minutes.35

In terms of areas for improvement in SyMon, one issue is that when JSON-36

formatted logs are provided, it should be possible to verify the values of each37
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field without preprocessing. Currently, SyMon cannot handle JSON-formatted1

logs directly, so it is necessary to preprocess the logs into a format that SyMon2

can handle. However, describing preprocessing individually for each system is a3

significant burden in terms of implementation. We would like to further improve4

SyMon to create a practical monitoring system.5
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