Recombinable Benchmarks and Tools

Simon Dierl'® and Falk Howar!-2

1 TU Dortmund University, Dortmund, Germany
{simon.dierl, falk.howar}@tu-dortmund.de
2 Fraunhofer ISST, Dortmund, Germany

1 Introduction

In many disciplines, including Software Engineering, research involves the imple-
mentation of ideas and algorithms into (prototypical) tools. Claims about the
correctness or performance of the algorithms are evaluated by executing these
tools on benchmarks, i.e., collections of data and accompanying metadata.

The creation of replication packages,
i.e., peer-reviewed, long-term archived bun-
dles, usually containers, accompanying
publications, ensures that these experi-
ments can be re-run by other researchers.
W.r.t. to the FAIR [5] and FAIR4RS [1] Facet
principles, accessibility is guaranteed by
long-term archival, while findability de-
pends on the package’s metadata.

However, research building upon prior L
ideas requires not only repetition of past Conf. If.
experiments, but recombination of “his-
toric” tools with new or extended bench-
marks as well as new tools with previously
used benchmarks. The former enables the Figurel. A recombinable learning tool
study of tools’ “evolution” and the latter and benchmark.
enables comparisons between competing tools based on large benchmark sets.
This can not be achieved via replication packages, since they are closed systems.

We propose a novel approach [4] to packaging benchmarks and tools that
enables recombination inspired by, i.a., ETI [3] and SV-COMP’s tool format [2],
sketched in Fig. 1: tools and benchmarks are packaged (and distributed) indepen-
dently. Combination for a study uses standardized interfaces instead of creating
a new artifact. For tools, this necessitates a container format that allows users
to make benchmarks, configurations, etc. available to the tool. For benchmarks,
we do not envision study-specific data, but long-lived data sets aggregating the
greatest amount of data possible that can be used in a wide variety of fields. Re-
combination requires standardized basic exchange formats, i.e., the tool container
format and descriptors for tools and benchmarks. We do, however, not prescribe
the actual data formats. Recombinable tools and benchmarks will, by definition,
be interoperable and reusable, while descriptors increase their findability w.r.t. to
the FAIR and FAIR4RS guidelines.

Benchmark Tool Package

Facet Function

Function
11

Function
111

Facet

Al

Data Interface

Config.

(£


https://orcid.org/0000-0001-9730-9335
https://orcid.org/0000-0002-9524-4459
https://sv-comp.sosy-lab.org/

2 S. Dierl and F. Howar

2 Proposed Specification

Our proposed abstract specification defines an abstract approach to creating
benchmarks, a standardized tool container format, and a descriptor language for
both. As far as possible, all are based on established technologies.

Benchmarks. Ideally, a benchmark is stored using an structured, hierarchical
data format such as JSON or YAML. Then, a concrete specification of the format
must define the syntaz (i.e., the data format) and the semantics. We propose to
define the syntax via a media type. For the semantics, we must address the issue
of storing and describing many different, but independent types of information
present in the benchmark. We call these facets. We can then schematize each
individual facet using JSON Schema as long as each facet’s data is decoupled
(e.g., by being stored in different fields of an associative array). The benchmark
as such is then described by its media type and all facets’ schemata it satisfies.

Tools. For tools, we recommend the use of the Singularity container format. As
opposed to other container frameworks, e.g. Docker, this is designed to a) store
containers in a single file and b) allows for easy file system integration, yielding
a simple interface to inject benchmarks and configuration files. In addition,
Singularity is already a popular technology in HPC.

Descriptors. Our proposed descriptor links benchmarks and tools by associ-
ating each with an accompanying rereso-benchmark.yml or rereso-tool.yml,
respectively. Aside from commonly used metadata such as name, license, or
references, benchmarks specify their formats as a combination of media type
and schemata. Tools, however, describe their modes of invocation via input and
output formats, each defined as a media type-schemata tuple. This also enables
future work on automated search and type checking on, e.g., tool pipelines.

Acknowledgments. Funded by the German Research Foundation (DFG) — project
numbers 442146713 (NFDI4Ing); 495857894 (STING).

References

1. Barker, M., et al.: Introducing the FAIR Principles for research software. Sci. Data
9(1), 622. https://doi.org/10.1038 /s41597-022-01710-x

2. Beyer, D., Strejéek, J.: Improvements in software verification and witness validation:
SV-COMP 2025. In: Proc. TACAS. pp. 151-186 (2025). https://doi.org/10.1007/
978-3-031-90660-2_ 9

3. Braun, V., et al.: The ETI Online Service in action. In: Proc. TACAS. pp. 439443
(1999). https://doi.org/10.1007/3-540-49059-0 31

4. Dierl, S., Howar, F.: Towards a specification for recombinable benchmarks and
software tools. ing.grid preprint, https://preprints.inggrid.org/repository/view/55/

5. Wilkinson, M.D.; et al.: The FAIR Guiding Principles for scientific data management
and stewardship. Sci. Data 3(1), 160018. https://doi.org/10.1038 /sdata.2016.18


https://gepris.dfg.de/gepris/projekt/442146713
https://gepris.dfg.de/gepris/projekt/495857894
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/3-540-49059-0_31
https://doi.org/10.1007/3-540-49059-0_31
https://preprints.inggrid.org/repository/view/55/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

	Recombinable Benchmarks and Tools

