SpecMon: Unifying Verification and Monitoring for
WireGuard

Kevin Morio
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
kevin.morio@cispa.de

i1 k = rand() '

Protocol Implementation 1 2 x = receive() !
(e.g., WireGuard) v 3y =senck, x)

' 4 send(y) '

Robert Kiinnemann
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
robert.kuennemann @cispa.de

[Frik), In(x)]

S : Protocol Specification
[out(senc(k, x))1 E (Tamarin MSRs + Format Strings)

Event Aggregator

Network
1/0

Env.
Interface

Crypto
Library

i 1 1 —

Runtime Monitor

' (random(), @0xaa) ' T
""""""""""" l 1

v

v"Accept / © Abort Debug Output

Fig. 1. SpEcMoN’s architecture, connecting an event aggregator to the monitor.

Abstract—Formal verification tools provide strong security
guarantees for protocol models, but these guarantees do not
transfer to real-world implementations. Runtime monitoring is
a promising approach to bridge this gap, yet it introduces a
critical new challenge: the specification used for monitoring can
diverge from the one used for verification, silently undermining
the formal guarantees.

In this work, we solve this problem by developing a unified
specification for the WireGuard VPN protocol. We demonstrate
that our unified model is simultaneously suitable for formal
verification in Tamarin and runtime monitoring with our tool
SpecMoN of a Go implementation. This approach not only elim-
inates specification divergence but also enhances the precision of
the original model with minimal changes. Our work establishes
that a unified model is a practical and crucial step towards
building trustworthy security protocol implementations.

Index Terms—Security protocols, Monitoring, Verification,
WireGuard, SpecMon, Tamarin

I. INTRODUCTION

The foundation of today’s connected world is secure com-
munication. To make communication secure, researchers have
created numerous security protocols to meet their different
requirements. The past has shown that the design of secure
protocols is a challenging task with the risk of leaking sensi-
tive information which could lead to drastic consequences.
While proving desired properties of these protocols by hand
is theoretically possible, it is prone to human error and, with
their increasing complexity, requires significant effort.

To increase the trust in security protocols, researchers have
developed verification tools that allow them to formally model
a protocol, define the security requirements, and automatically
obtain a proof or counterexample for each property.

These tools give us strong formal guarantees of the
protocol’s model, a necessary first step. However, they provide
no guarantees for actual implementations of the protocol—

what is executed in the real world and where leaks happen.
The reasons for this are manifold: Developers may acciden-
tally use the wrong cryptographic primitives or use them in
an insecure way, implement logic flaws, or even maliciously
hamper security by introducing a back-channel. There is a gap
between the strong results from the formal model and the lack
of them for real-world implementations.

While runtime monitoring can bridge this verification gap,
it requires a formal specification of the expected behavior. If
this monitoring specification is developed independently of
the verification model, they can diverge. This divergence is
perilous: a property may be proven in the verification model
but not be enforced by the monitor, leading to a false sense
of security.

We proposed SpEcMon [1], a tool that uses Tamarin
models [2] for monitoring. In this work, we leverage SPECMon
to address the divergence problem by creating a unified
model for WireGuard that serves both for verification and
monitoring.

II. SpEcMoN OVERVIEW

SpEcMonN’s architecture, shown in Figure 1, consists of two
mostly independent parts: an event aggregator and the monitor
itself.

The event aggregator observes relevant program events
of the implementation at runtime and records them in an
event trace. The set of relevant program events includes
cryptographic operations, network communication, as well as
environment events like file access. The event aggregator can
be realized with the most suitable technique for the scenario.
In a black-box scenario where no source code access is avail-
able, an instrumentation toolkit like Frida [3] can be used. If
we have access to the crypto and networking library’s source
code, we can annotate the relevant functions.


mailto:kevin.morio@cispa.de
mailto:robert.kuennemann@cispa.de

TABLE 1
KEY DIFFERENCES BETWEEN OUR UNIFIED AND THE REFERENCE MODEL.
Component Model in [4] This work
Message format Tuples Format strings

Long-term keys Fresh names Read from files

Key derivation Abstracted Fully specified

DDoS protect. Public names Precomputed

Counters Public names Natural numbers

Message exchange Single message Multi-message

SpEcMon reads a given model file in Tamarin’s specifi-
cation language and turns it into a monitor for a particular
agent role (e.g., client or server). It then consumes the event
trace from the event aggregator and checks if each event is
permissible in the current state. If a violation is detected,
SPECMoN can terminate the monitored program and notify
the user.

III. Caske Stupy: WIREGUARD

WireGuard [4] is a state-of-the-art VPN protocol with wide
adoption. Due to its use of modern cryptography (Noise
protocol framework) and a formal Tamarin model co-authored
by WireGuard’s creator, it serves as an ideal case study for
our unified approach. For this, we use the userspace Go
implementation [5].

Our primary goal in this case study was to create a single,
unified model of WireGuard suitable for both monitoring
with SpEcCMon and verification with Tamarin. This unification
ensures that the specification proven correct is the same one
used for monitoring, preventing the divergence described in
the introduction. This is a significant evolution from our pre-
vious work in [1], which focused primarily on the feasibility
of monitoring from a Tamarin model.

To create a unified model, we first merged the previously
separate multi-set rewriting rules (MSRs) for the initiator and
responder roles and re-added actions required for verification.
The main challenge in creating a unified model is bridging
the abstraction gap between the symbolic world of verification
and the concrete world of an implementation. We bridge this
gap through careful use of Tamarin’s preprocessor to select
the appropriate rules and macros. For instance, in verification,
new keys are modeled as abstract fresh names. For monitoring,
the preprocessor selects a different rule where a concrete key
is loaded from a file. Similarly, abstract message tuples for
verification are replaced by format-string macros that define
the exact byte-level layout for monitoring. This allows a single
model source to serve both Tamarin and SpEcMonN without
modification.

The remaining key differences, summarized in Table I, are
due to abstractions in the original model, which, for instance,
only allowed a single message exchange and abstracted away
message counters.

For evaluation, we monitored a WireGuard server con-
nected to 100 clients, with each of them sending a ping
before terminating. We also used the recorded event trace for

offline monitoring. In the second setting, we monitored one
of the clients instead of the server. In both cases, each event
is accepted by SpEcMoN, ensuring that the implementation
adheres to the model.

To demonstrate that our approach can also detect deviations
from the model, we have deliberately introduced errors into
the implementation. For instance, we modified the implemen-
tation to reuse ephemeral keys, and in another case, we
prevented the transport message counter from being incre-
mented. In both scenarios, the monitor successfully identified
the deviation and terminated the program.

The structural changes made to create the unified model
necessitated re-validating the original security properties in
Tamarin. We successfully re-verified all original lemmas on
our more precise model. This process resulted in a modest
increase in verification time from approximately 25 seconds
to 100 seconds, which we consider an acceptable trade-off for
the benefits of unification.

Our analysis revealed that the original model’s identity
hiding property relied on a verification-specific artifact: a
surrogate key added to the encrypted payload. Our unified
model, which enforces the implementation’s true message
format, does not permit such an artificial element at runtime.
We addressed this by replacing the surrogate’s fresh name
with a constant value, which is ignored during monitoring.
This approach allowed us to successfully complete the proof
while preserving the model’s compatibility with the real-world
protocol implementation.

IV. DiscussioN AND FUTURE WORK

This work demonstrates that unified models for formal
verification and runtime monitoring are practical for real-
world protocols like WireGuard, resulting in a Tamarin model
that is more precise than the original reference. Our approach
is designed to uphold the same security guarantees while
preventing the critical issue of specification divergence. This
unified model provides a reusable template for monitoring
any implementation of the protocol, significantly lowering
the maintenance burden compared to managing two separate
specifications and increasing the trust that can be placed in
an implementation’s security.

Our work opens several avenues for future research. A key
direction is to further automate the creation and refinement of
unified models. We plan to explore techniques for inferring
message formats directly from observed network traffic, re-
ducing the manual effort required to adapt a symbolic model.
Another promising direction is the automated completion of
partial models. When SpecMon rejects an event, it already
provides a list of permissible next steps; this feedback could
be used to suggest new rules to a developer, enabling a semi-
automated, interactive model refinement process.

Finally, while SpEcMoN’s performance is already practical,
we see opportunities for further optimization, especially for
high-throughput applications.



V. ARTIFACT AVAILABILITY

Our artifact is available on Zenodo [6] and includes all

components necessary to reproduce our WireGuard case
study:

e The unified Tamarin model for WireGuard that serves
both verification and monitoring

* Dockerfiles for running the monitoring evaluation of
WireGuard and creating a Tamarin image

* Pre-built Docker containers as tarballs for immediate use

* Comprehensive documentation with reproduction in-
structions

The evaluation scripts are integrated into the Docker con-

tainers. Source code for SpecMon, required libraries, and
the WireGuard-Go implementation are fetched from GitHub
using fixed commit hashes during container build to ensure
reproducibility.

(1]

[2]

(3]
[4]

[3]

[6]

REFERENCES

K. Morio and R. Kiinnemann, “SpecMon: Modular Black-Box Runtime
Monitoring of Security Protocols,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, in CCS
'24. Salt Lake City, UT, USA: Association for Computing Machinery,
2024, pp. 2741-2755. doi: 10.1145/3658644.3690197.

S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols,” in Computer
Aided Verification, N. Sharygina and H. Veith, Eds., in Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 696-701.
doi: 10.1007/978-3-642-39799-8_48.

F. Developers, “Frida Instrumentation Toolkit.” [Online]. Available:
https://trida.re/

J. A. Donenfeld, “WireGuard: Next Generation Kernel Network Tun-
nel,” in Proceedings 2017 Network and Distributed System Security
Symposium, San Diego, CA: Internet Society, 2017. doi: 10.14722/
ndss.2017.23160.

J. A. Donenfeld and contributors, “wireguard-go: A Go implementa-
tion of WireGuard.” [Online]. Available: https://github.com/WireGuard/
wireguard-go

K. Morio and R. Kiinnemann, “SpecMon: Unifying Verification and
Monitoring for WireGuard (RVCase 25 Artifact).” [Online]. Available:
https://doi.org/10.5281/zenodo.17023428


https://doi.org/10.1145/3658644.3690197
https://doi.org/10.1007/978-3-642-39799-8_48
https://frida.re/
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://github.com/WireGuard/wireguard-go
https://github.com/WireGuard/wireguard-go
https://doi.org/10.5281/zenodo.17023428

	Introduction
	SpecMon Overview
	Case Study: WireGuard
	Discussion and Future Work
	Artifact Availability
	References

