Bug Finding in Drager’s Medical Devices:
Field Experience with LoLA4D

Normann Decker?, Martin Leucker' ®, Torben Scheffel?®, Michael Schulz?, and
Daniel Thoma!

! Universitit zu Liibeck, Liibeck, Germany
{leucker,thoma,scheffel}@isp.uni-luebeck.de
2 Drigerwerk AG & Co. KGaA

Abstract. This paper reports on the experience gained by using the
runtime verification tool LoLA4D for bug finding in Drager’s medical
devices in the field for over thirteen years.

1 Introduction

Driger (Dragerwerk AG & Co. KGaA) is a German technology company head-
quartered in Liibeck that develops, manufactures, and services products for med-
ical and safety applications worldwide. Its portfolio spans life-support and anes-
thesia workstations, ventilators, patient monitoring systems, and related med-
ical accessories, as well as gas detection, respiratory protection, and firefight-
ing equipment for industrial and public-safety customers. Across these domains,
Dréger’s reputation rests on designing dependable devices for critical environ-
ments—operating rooms, intensive-care units, and emergency response—where
reliability and traceability are non-negotiable.

Medical devices are among Dréger’s core products, and they undergo rigor-
ous verification and validation before shipment. Extensive bench tests, simulated
clinical workflows, environmental stress evaluations, and formal release checks
collectively drive a very low residual defect rate. Inevitably, however, a small
number of issues only surface in practical use “in the field” where real-world
variability exceeds what any test lab can comprehensively reproduce. These field
issues fall into several recurring categories. Some arise from environmental condi-
tions that deviate from the intended operating envelope (temperature, humidity,
airflow, electromagnetic interference). Others emerge gradually through the age-
ing of components and normal wear, particularly in long-duty cycles. A portion
reflect unmet maintenance requirements: filters not replaced on time, out-of-
calibration sensors, or firmware left on an outdated revision. Finally, a small
subset are uncaught software bugs that escaped pre-release testing. Importantly,
certain problems are not intrinsic product defects but are instead contingent
on uncontrolled customer-side conditions: for example, running a device out-
side its specified operating conditions or integrating it with third-party systems
in unsupported ways. In all cases, quick, evidence-based diagnosis is essential:
clinicians and technicians need to understand what happened, why, and how to
prevent recurrence without compromising patient care.


https://orcid.org/0000-0002-3696-9222
https://orcid.org/0000-0002-3696-9222
https://orcid.org/

2 Decker et al.

Bug Finding To enable precise, retrospective analysis of behavior in the field,
Dréger devices perform extensive logging. Log files are plain-text; each entry is
a single line appended as events occur. Although line-oriented, the messages are
structured: fields such as timestamp, subsystem, severity, identifiers, and payload
can be parsed into columns, giving the logs an effective relational shape. This
design keeps the logs both human-readable and machine-processable, allowing
technicians to skim them quickly while also supporting automated analysis at
scale.

When a problem is reported, Dréger follows a disciplined debugging model
anchored in logs. A field technician’s description, e.g. symptoms, context, timing,
environmental observations, serves as the starting point. A tester or domain
expert who understands the device’s architecture converts that narrative into
a concrete hypothesis: “Given these symptoms, the most plausible explanation
is X, which would leave witness Y in the logs.” The first validation step is to
search for that witness: a distinctive message, code, or invariant violation that,
if present, materially supports (or refutes) the hypothesis.

For many issues, a single log line suffices as a witness. Dréger uses a ded-
icated search tool that lets testers define patterns describing the line they are
looking for based on regular expressions, typically combinations of keywords,
field values, or simple predicates, for example “search for AlarmManager: queue
overflow in the related device.”. This approach is fast, reproducible, and easy
to communicate. By having multiple regular expressions like that, the problem
description and domain knowledge of the person analyzing the log, the person
sooner or later determines the root cause of the problem, being it a bug, misuse
or some external effect. Yet single-line search also has inherent limitations. It can
produce false positives when a message template appears in benign contexts, and
it struggles with failure modes that are fundamentally temporal or causal, i.e.
where meaning emerges only from the order and timing of multiple events. Ad-
ditionally, it may happen that a crucial single-line log message might be missing
so that a simple pattern search approach based on single-line log messages fails
entirely. To some degree LOLA4D may be able to compensate for such omissions
that - more often than not - are only identified in retrospect.

Complex failures often unfold as sequences: a sensor signal degrades, a cal-
ibration check is skipped, a watchdog timer stretches, a buffer grows, and only
then an alarm triggers. No single line is definitive; the pattern is the story told
by several entries in relation to one another. Moreover, checks regarding timing
constraints like that something occurred in a certain time span, are crucial to
finding bugs, especially in regards to devices with hard real time requirements. In
the current approach, checking time stamps is an additional manual effort. Rec-
ognizing this need for higher-order analysis, Driager and the Institute of Software
Engineering and Programming Languages of the University of Liibeck initiated
a collaboration in 2012 that led to the development of the tool LoLA4D. Since
then, LOLA4D has been used to express and detect complex temporal patterns
across Drager’s device logs, turning raw line streams into verifiable, causal nar-
ratives about system behavior.



Bug Finding in Dréger’s Medical Devices: Field Experience with LoLAa4D 3

In this paper, we describe LOLA4D and the experience gained with using it
in an industrial context.

2 LoLa4D

LoLA4D is custom implementation of the Lola approach pioneering stream run-
time verification [1]. Lola is a lightweight runtime verification tool and specifica-
tion language designed for monitoring system executions by evaluating stream-
based properties over time. Instead of checking correctness only after the fact,
Lola runs alongside a system (or over its logs) and continuously computes derived
streams—such as counters, rates, or temporal predicates—from input signals like
events, sensor values, or log fields. Specifications are written as declarative equa-
tions that define these output streams, making complex temporal relationships
(ordering, windows, thresholds, absence/presence patterns) both expressive and
readable. Because Lola processes inputs in a single pass with bounded memory
where possible, it suits online monitoring and post-hoc analysis of large traces
alike.

LoLA4D is an implementation of the Lola approach tailored for Drager. It
is implemented in Scala and has a direct interface to the logfile databases used
for Drager medical device log analysis. Properties are specified in a Scala-based
DSL (Domain Specific Language) enriching the Lola formalism with the expres-
siveness of a functional programming language. Field logs can span days and
millions of lines. LOLA4D is designed to stream through large log databases effi-
ciently, evaluating patterns in one pass where possible. Every finding is traceable
back to concrete log lines and timestamps.

3 Runtime Verification of Logfiles at Drager

The classical approach analyzing logfiles based on regular expressions used at
Dréger requires significant manual effort and is heavily dependent on the per-
son analyzing and combining the clues correctly. Therefore, Drager started a
research project 13 years ago to improve log analysis by using Runtime Verifica-
tion methods on their logs to facilitate a greater degree of automatization and
to allow for precise specifications of misbehaviour.

Dréager’s Logfiles As mentioned before, each line of a device logfile follows a
specific structure. A log entry comprises fields like the timestamp when an event
occurred, the associated part of the system and content fields that describe the
event in detail. Events include alarms being raised, exceptions having occured,
or the user having switched between certain device modes. Not all these types
of events represent a failure, most merely document the behavior of the device.



4 Decker et al.

Use Cases There are many cases where the usage of Runtime Verification
methods helped to efficiently find the corresponding problem in a logfile. We
want to highlight the most interesting ones here. It is important to note that,
while some of the use cases were found by clients using the devices in the field,
in none of use cases a patient could have been harmed or has been in danger.
Most have been found during clients maintaining the device or were cases where
the device did something odd or unpleasant which the client reported later, but
which had no severance that it could have stopped the client from treating a
patient properly or confusing the client. All problems occurred many years ago
and are all fixed today.

Unwarranted Flow-Sensor Calibration Alarm This is a behaviour that occurred
multiple times in the field. The calibration of a sensor was successful every
morning, however, an unwarranted sensor calibration alarm arose claiming that
this did not happen. Therefore, a recognition of faulty alerting for flow sensor
calibration was necessary as this faulty alarms can fool the user that a sensor
calibration is needed and the device is not usable. No cause was being found in
the logs for some weeks until the device requirement from risk management was
converted directly into a Lola specification to measure the minimal time between
two events. With this, a faulty behaviour was being found quickly and lead to
the discovery of a hardware defect of the sensor as well as a bug in the self test
software of the device.

Dubious Ambient Pressure Measurements In rare cases, the abortion of a reset of
the sensor lead to measuring too low environmental pressure. A Lola specification
was written which uses existing correct numerical log data to compare with
every pressure measurement within five seconds after a sensor calibration in
the log under scrutiny. Various suspicious measurements have been found which
allowed to further investigate the surrounding log entries which finally lead to
the realization that this is a general problem that can be fixed via a software
solution.

Log Integrity It was reported that in the debug log, error messages were included
stating that the sequence of the events in the log is compromised, even though
after investigation, everything was fine and the events in the log have been in
the correct order. A Lola specification was used to look back from certain events
to check causality of the order of events. It was shown that this is an effect
that occurs quite often by analyzing many logs with Lola. Even though this
is annoying, it was considered acceptable at that time and fixed with a later
software version. LOLA4D helped to analyze this issue quickly by automatically
analyzing many logs for this specific behaviour.

Alive-flag Failures Here, the reason for the very rare alive-flag failures arising
after the device’s start phase was not obvious. Such failures can potentially
lead to a device restart, so it was critical. After some investigation, a relation
to the patient category and chosen language was suspected. Therefore a Lola



Bug Finding in Dréger’s Medical Devices: Field Experience with LoLAa4D 5

specification was written that outputs those values in a clean and structured
way when error cases are found in the log. This helped getting a much better
idea what the problem could be and to find out that the failure at hand was not
able to cause a device restart.

Battery Problem: Alarms Wrong alarms regarding the battery could fool the
user, so they issue a battery switch which may lead to high costs for Drager.
Therefore, we checked of functional correctness of battery related alarms by
checking consistency between alarm state and measured values. We wrote a Lola
specification to implement alarm logic for checking of measured values fit to risen
alarm.

Battery Problem: Loading Problems with faulty loading functionality occurred,
which could lead to batteries not working when they are needed. A Lola specifi-
cation was written to check the minimal loaded capacity after a certain amount
of time. It confirmed the assumption that there are problems with the batteries
and made it easy to quickly analyze logs for this misbehaviour.

False Alarm Suppression In rare cases, an alarm was suppressed when it should
not have been. Alarms are important as they notify the user that something
is not right with the device. A Lola specification was used to check whether
an alarm marked as suppressed in the logfile has been suppressed correctly by
specifying alarm logic (values and timing) in Lola.

4 Experiences

Over 13 years of use, LOLA4D has proven uniquely valuable in Dréger’s field
investigations: it consistently helps analyzing rare, potentially high-impact find-
ings, that elude conventional techniques. For the use cases mentioned above,
the investigation before using LOLA4D had been ongoing for weeks or even
months. In contrast, the answer was found quickly after starting an analysis
with LoLA4D, either because it provided a hint or directly lead to the cause of
the anomaly. Six of the seven use cases described in this paper were newly found
and unexpected functional deviations in the system, one was a confirmation of
a problem. Six of those were found in the field and would have lead to very high
costs for Drager or lowered the reputation if the root cause would have remained
unknown or the analysis would have taken more time, because potentially ser-
vice technicians would have had to switch multiple pieces of hardware or the
software department would have tried different software solutions.

LoLA4D runs reliably even on multi-million-line logs, and is straightforward
to apply to device log files once a specification exists. The principal drawback is
the steep complexity of writing correct, maintainable Lola specifications; in prac-
tice, domain experts seeking analysis support (e.g. software developers, life-cycle
engineers) do not author specs themselves. Instead, a small number of trained
specialists translate hypotheses, formulated by domain experts based on case



6 Decker et al.

descriptions, into executable LOLA4D monitors. This division of labor works,
but it limits scalability and slows knowledge transfer. Introducing curated Lola
specification patterns (reusable, parameterized templates for common failure nar-
ratives) would lower the barrier for domain experts, reduce time-to-analysis, and
make expert know-how more broadly accessible without sacrificing rigor.

5 Conclusion

The adoption of LOLA4D has shifted bug finding from reactive searching toward
a disciplined, knowledge-driven practice. By combining rigorous pre-shipment
testing, structured logging, and expressive temporal pattern matching, Drager
has built a robust capability to detect, explain, and prevent complex failures in
the field. While not many bugs have been found at all in the field, thanks to
Dréger’s quality assurance measures during development, LOLA4D turned out to
be beneficial for spotting rare bugs emerging in the field. Additionally LoLA4D
helps to set the stage for expectable analysis challenges from Dréger’s upcoming
networked product offerings where log data from multiple sources need to be
evaluated in a unified context. Dréger is working on setting up a comprehensive
repository of bug patterns to be checked for automatically during continuous
integration. Further future work includes the extension of LoLA4D towards
handling several logfiles in parallel, allowing runtime verification across multiple
logfiles.

References

1. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME 2005), 23-25 June 2005, Burlington, Vermont, USA. pp. 166-174.
IEEE Computer Society (2005). https://doi.org/10.1109/TIME.2005.26, https:
//doi.org/10.1109/TIME.2005.26


https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26

	Bug Finding in Dräger's Medical Devices: Field Experience with LoLa4D

