
Quint Specifications for Design and Testing

 Ivan Gavran¹

¹ Informal System
https://www.informal.systems

Abstract. We report on specifications developed in Quint, a novel specifi 
cation language based on TLA. The specifications are developed as a part
of Informal System’s work on development and security audits of various
blockchain systems. In this report, we focus on two specifications: 1) the
specification of Malachite implementation of Tendermint consensus, 2) the
specification purpose built for testing of liquidity migration for Neutron’s
decentralized exchange. We describe the properties of those specifications
and provide links to those (and some more) Quint specifications.

1 Introduction
Informal Systems is a tech company working on design, verification, and imple 
mentation of distributed protocols. Our main focus has been on blockchain related
tehcnologies: consensus algorithms, light clients, bridges, and decentralized ex 
changes.

Over the course of last five years, as part of our work, we have specified a
number of systems at different phases of development: in the design phase, testing
phase, or auditing phase. Our specifications have been written in TLA+ [1] and
Quint [2]. (A full list of systems specified in Quint, by Informal and others, is
available on Quint’s homepage [3].)

In this report, we want to showcase two example specifications.
The first one specifies Malachite [4], a Byzantine fault tolerant consensus

engine in Rust. We chose the Malachite specification [5] as an example of a
specification that was done prior to and alongside the implementation, to help
with design decisions and spot problems early. Furthermore, it is a specification
of a large, production ready codebase.

The second specification [6] was written for a decentralized exchange (DEX)
running on the Neutron blockchain [7]. It was developed in the context of
reviewing Neutron’s liquidity migration to new liquidity pools. This was a high 
risk operation that, if not done correctly, would jeopardize funds of many users.
Thus, we created a simple specification that was then used to create end to end
test to run against. Using that specification, we managed to find an interesting
bug, resulting in one user getting funds of the others.

In the workshop, we plan to give only a brief overview of the first specification,
and focus our attention on the second one, for its simplicity. We are also looking
forward to discussing future work on inspecting systems’ logs using Quint speci 
fications.

Before describing the specifications, we will give a very short intro to Quint.

https://www.informal.systems


2 I. Gavran

2 Quint basics
Quint is a modeling language inspired by TLA+ [1]. Quint’s main difference
compared to TLA+ is being significantly more in line with standard development
practice. While there are arguments that staying away from development prac 
tices is beneficial for a specification langauge [1], we find that Quint’s focus on
integrating standard vocabulary and providing ergonomic tools has been essential
for bringing modelling into practice.

Quint is a typed language and it supports basic types such as bool, int, and
str, but also structures such as Records, Sets, Maps, Tuples, and Lists.

Quint’s CLI enables user to use its REPL (to experiment with the specification
step by step), run a simulation of the specification (until an invariant violation
is found), or model check the specification using the Apalache [8] model checker
(and the support for the TLC [9] model checker is coming soon).

For more details on using Quint, see https://quint lang.org/.

3 Malachite
Malachite [4] is a Rust implementation of Tendermint consensus algorithm [10].
Being done after the original Golang implementation, it took the lessons from it,
one of them being to start with a formal specification.

The specification [5] was written in Quint, and was used in the design phase,
as well as for testing the implementation, in two ways.

First, there are deterministic tests of the protocol itself, which are then applied
to the implementation. They can be found e.g. in the test DecideNonProposerTest.

Second, there are model based conformance tests, for which Quint generates
test steps, and the test requires the state of the implementation to conform
with the state of the model. This type of test can be found in the test
test_mbt_part_streaming_random_traces. (A lot of the model based testing func 
tionality is accomplished by the application independent Rust library itf-rs [11].)

4 Neutron DEX Liquidity Migration
The migration specification [6] was written for the security audit [12] of the code
that was performing migration of users’ funds.¹ Alongside manual review, we
performed end to end tests of the whole process.²

Our approach was to create a very light model: the model captures what
actions may be taken, but does not model full changes of the state. From the

¹Independent of the specification for the migration, there is exists another
specification of the DEX [13], aiming at checking the protocol rather thant he
implementation.

²Note that the migration process is non deterministic, since it needed to be
permissionless. Thus, any user could have taken part in the migraiton.

https://quint-lang.org/
https://github.com/circlefin/malachite/blob/6f23c04693358734ff3e457f507d928dbccceab3/specs/consensus/quint/tests/consensus/consensusTest.qnt#L71C5-L71C32
https://github.com/circlefin/malachite/blob/6f23c04693358734ff3e457f507d928dbccceab3/code/crates/starknet/test/mbt/src/tests/streaming.rs#L53C1-L53C45


Quint Specifications for Design and Testing 3

model, we generated a large number of traces. Upon executing each step of those
traces, we checked for the step postconditons.

4.1 Detected Problem

The (stripped) scenario that uncovered a problem consisted of three actions: Bob
migrates Alice, Charlie migrates Bob, and Alice claims rewards with withdrawal
from the new pool. Implicit in that description is that some time passes between
the actions.

To understand the problem with this scenario, let us outline the behavior
we expected from the system. After Alice’s position was migrated from the old
pool to the new pool, a certain amount of time passed before Bob’s position was
migrated to the same pool. During that time, Alice should have earned her new
pool rewards. However, it turned out that Alice got the same amount of rewards
as Bob (who was migrated at a later point).

Why did that happen? As an implementation detail, there was an internal
variable for tracking rewards, that got updated each time a user explicitly claimed
rewards. However, that variable was not updated upon initially providing liquidity
to the new pool, when rewards were given, too.

5 Future work
Our future work is motivated by a class of problems that we encountered running
consensus systems in production: an unexpected behavior happens (for instance,
the protocol does not progress, even though it is expected to do so), and we need
to understand why. Understanding the why for consensus implementations is a
difficult problem, and debugging it is almost impossible because of its distributed
nature.

Thus, we are currently designing a tool that 1) consumes system logs, 2)
transforms them into a (Quint understandable) trace, and then 3) uses Quint to
create the exact state achieved by the trace. Once in the state, we can experiment
with the REPL, inspect pre conditons for expected actions, and compare them
to the state of the running system. This approach should allow us to understand
potential root causes of the problem faster.

References
1. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and

Software Engineers. Addison Wesley (2002).
2. Quint Language, https://quint lang.org/, last accessed 2025/08/22.
3. Quint Use Cases, https://quint lang.org/docs/use cases, last accessed 2025/08/22.
4. Malachite: Byzantine fault tolerant consensus engine, https://github.com/circlefin/

malachite, last accessed 2025/08/22.

https://quint-lang.org/
https://quint-lang.org/docs/use-cases
https://github.com/circlefin/malachite
https://github.com/circlefin/malachite


4 I. Gavran

5. Cason, D., Hutle, M., Vanzetto, H., Widder, J.: Malachite Consensus Specifications in
Quint, https://github.com/circlefin/malachite/tree/main/specs/consensus/quint, last
accessed 2025/08/22.

6. Gavran, I., Ignjatijevic, A.: Model based Fuzzing for Liquidity Migration,
https://github.com/informalsystems/liquidity_migration_test_model, last accessed
2025/08/25.

7. Neutron DEX Documentation, https://docs.neutron.org/developers/modules/dex/
overview#overview, last accessed 2025/08/22.

8. Konnov, I., Kukovec, J., Tran, T. H.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang. 3, 1–30 (2019).

9. Yu, Y., Manolios, P., Lamport, L.: Model Checking TLA\({}^\mbox{+}\) Specifica 
tions. In: CHARME. pp. 54–66. Springer (1999).

10. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR.
(2018).

11. Ruetschi, R., Biswas, R.: itf rs, https://github.com/informalsystems/itf rs, last ac 
cessed 2025/08/25.

12. Gavran, I., Ignjatijevic, A.: Neutron Liquidity Migration: Security Audit Re 
port, https://github.com/informalsystems/audits/blob/main/Neutron/2024 03 21_
liquidity_migration_audit_report.pdf, last accessed 2025/08/25.

13. Bravo, M., Gavran, I., Moreira, G.: Neutron DEX Specification, https://github.com/
informalsystems/neutron dex model, last accessed 2025/08/25.

https://github.com/circlefin/malachite/tree/main/specs/consensus/quint
https://github.com/informalsystems/liquidity_migration_test_model
https://docs.neutron.org/developers/modules/dex/overview#overview
https://docs.neutron.org/developers/modules/dex/overview#overview
https://github.com/informalsystems/itf-rs
https://github.com/informalsystems/audits/blob/main/Neutron/2024-03-21_liquidity_migration_audit_report.pdf
https://github.com/informalsystems/audits/blob/main/Neutron/2024-03-21_liquidity_migration_audit_report.pdf
https://github.com/informalsystems/neutron-dex-model
https://github.com/informalsystems/neutron-dex-model

	Introduction
	Quint basics
	Malachite
	Neutron DEX Liquidity Migration
	Detected Problem

	Future work
	References

