
Tiny Drone, Tiny Resources: Deploying RTLola
Monitors on the Crazyflie Platform

Jan Baumeister1 , Vihaan Bhaduri2, Bernd Finkbeiner1 ,
Florian Kohn1 , and Frederik Scheerer1

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{jan.baumeister, finkbeiner, florian.kohn,
frederik.scheerer}@cispa.de

2 Saratoga High School, Saratoga, USA
vihaan.bhaduri@gmail.com

Abstract. The Crazyflie is an open-source micro quadcopter weighing
29g that can be operated indoors without special safety requirements.
This characteristic makes it a practical platform for developing and
testing runtime monitors beyond simulation. Its lightweight design also
makes it prone to disturbances such as drift, similar to larger drones in
outdoor environments, thereby providing realistic data without the need
for specially prepared environments. The Crazyflie is based on an STM32
microcontroller with 92kb of SRAM and 1Mb of flash memory shared be-
tween the flight controller and the monitor. In this paper, we present the
integration of the stream-based monitoring framework RTLola on the
Crazyflie. We describe how bounded memory monitors can be generated
for embedded devices, analyzing the trade-off between specification size
and the use of complex data structures. The evaluation is conducted
on a waypoint mission, tracking the absolute position of the drone with
millimeter precision.

Keywords: Stream-based Runtime Monitoring · Crazyflie · Embedded
Systems.

1 Introduction

The Crazyflie [1] is an open-source micro-drone platform based on the STM32
microcontroller. It includes an internal inertial measurement unit and flight con-
troller and can be extended with decks, such as the Multi-Ranger-Deck, which
measures distances to obstacles in five directions using time-of-flight sensors. Due
to its small size and weight, it can be operated without a license or strict safety
precautions. At the same time, its low weight makes it susceptible to distur-
bances such as drift in indoor flight, comparable to those experienced by larger
drones outdoors, which makes it a suitable platform for developing and testing
runtime monitors. Images of the drone used for the experiments presented in
this case study are shown in Figure 1

https://orcid.org/0000-0002-8891-7483
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0001-9672-2398
https://orcid.org/0009-0007-8115-0359

2 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

(a) The top view of the drone. (b) The side view of the drone.

Fig. 1: The Crazyflie drone used for the presented experiments.

RTLola [3,4] is a stream-based runtime monitoring framework that has
previously been applied to larger drones capable of carrying payloads of up
to 200kg. Prior work demonstrated that monitor integration must be tested
and verified throughout all development stages of unmanned aircraft, including
hardware-in-the-loop testing prior to flight tests. In these case studies [3,6,7], the
systems under observation could support dedicated monitoring hardware due to
more relaxed payload restrictions. By contrast, the Crazyflie has a maximal
recommended payload of 15g, which imposes strict limitations on additional
hardware.

This case study investigates how a runtime monitor can be integrated di-
rectly into the Crazyflie’s onboard embedded hardware, eliminating the need for
additional monitoring components. Using the RTLola Compiler [2] to generate
C code, we evaluate the binary size and memory requirements of monitors de-
rived from a comprehensive set of specifications. We compare two approaches:
one using parameterized streams, which require complex data structures to man-
age multiple stream instances, and another in which parameterized streams are
unrolled prior to compilation, resulting in significantly larger specification sizes.

2 The Crazyflie Platform

The Crazyflie project provides an open-source software stack supporting both
ground-based and onboard control and logging. Its internal motion commander
regulates the drone’s movement. The primary development entry point is the
cflib3 a Python library enabling communication with the drone from the ground
via a USB-powered transmitter. The drone firmware is also fully open source
and can be modified, for instance, by implementing applications through the

3 https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/
master/

https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/master/
https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/master/

Title Suppressed Due to Excessive Length 3

application API4 In the following, we summarize the properties monitored during
the experiments through these API’s.

2.1 Position Inputs

For the experiments, two types of position data were monitored. First, the Multi-
Ranger and Z-Ranger decks measured distances to the flight cage boundaries
using time-of-flight (ToF) sensors. Second, position estimates were obtained from
the stateEstimate logging group.

– range.front: Distance from the front sensor to an obstacle [mm].
– range.back: Distance from the back sensor to an obstacle [mm].
– range.up: Distance from the top sensor to an obstacle [mm].
– range.left: Distance from the left sensor to an obstacle [mm].
– range.right: Distance from the right sensor to an obstacle [mm].
– range.zrange: Distance from the Z-ranger (bottom) sensor to an obstacle

[mm].
– stateEstimate.x: Estimated position in the global reference frame, X [m].
– stateEstimate.y: Estimated position in the global reference frame, Y [m].
– stateEstimate.z: Estimated position in the global reference frame, Z [m].

3 RTLola

In this section, we provide an overview of RTLola using the waypoint spec-
ification applied in Section 5. The specification defines a monitor that verifies
whether the drone passes a sequence of waypoints in the prescribed order. Any
deviation from the path to the next waypoint is classified as a violation. For sim-
plicity, we restrict the setting to two dimensions and assume that the waypoints
are provided to the monitor prior to the start of the drone.

1 import math
2 input x : Float32
3 input y : Float32
4
5 constant UNREACHABLE: (Float64, Float64) := (-1.0, -1.0)
6
7 input wp_x: Float32
8 input wp_y: Float32
9 output waypoint_idx:UInt @wp_x :=

10 waypoint_idx.offset(by: -1).defaults(to: 0) + 1
11
12 output waypoint(idx: UInt)
13 spawn with waypoint_idx
14 eval when waypoint_idx == idx with (wp_x, wp_y)
15

4 https://www.bitcraze.io/documentation/repository/crazyflie-firmware/
master/userguides/app_layer/

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/userguides/app_layer/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/userguides/app_layer/

4 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

16 output distance_to_waypoint(idx: UInt)
17 spawn with waypoint_idx
18 eval with sqrt((x - waypoint(idx).hold(or: UNREACHABLE).0)**2.0 +

(y - waypoint(idx).hold(or: UNREACHABLE).1)**2.0)
19
20 output waypoint_reached(idx: UInt)
21 spawn with waypoint_idx
22 eval with waypoint_reached(idx).offset(by: -1).defaults(to: false)
23 || (current_waypoint == idx &&

distance_to_waypoint(idx) < 25.0)
24
25 output unreached_waypoints(idx: UInt)
26 spawn with waypoint_idx
27 eval @(x&&y) with idx
28 close @(x&&y) when waypoint_reached(idx).get(or:false)
29
30 output current_waypoint @(x&&y) :=
31 unreached_waypoints
32 .aggregate(over_instances:all, using: min).defaults(to: 0)
33
34 output finished @(x&&y) :=

waypoint_reached.aggregate(over_instances: all, using: forall)
35 trigger finished "All Waypoints reached successfully"
36
37 output distance_to_next @(x&&y) :=

distance_to_waypoint(current_waypoint).hold(or: 999.0)
38 output distance_to_next_increased := distance_to_next >

distance_to_next.offset(by: -1).defaults(to: 999.0)
39 trigger @2Hz
40 distance_to_next_increased.aggregate(over: 5s, using: forall)
41 "Drifting away from next waypoint"

Listing 1.1: An RTLola specification used to monitor that the Crazyflie passes
a series of waypoints in order.

The input streams wp_x and wp_y capture the coordinates of the waypoints
provided to the monitor. The drone is expected to pass these waypoints in the
given order. The waypoint_idx stream assigns an index to each waypoint, and
these streams are combined into the parameterized output stream waypoint.

A parameterized output stream in RTLola represents a set of stream in-
stances, each identified by a unique parameter combination. Stream instances
are created and removed dynamically at runtime. The waypoint stream is pa-
rameterized by a single parameter idx. Its spawn clause (line 13) specifies that
a new stream instance is created for each waypoint, with the parameter value
assigned from the current value of waypoint_idx. The eval clause defines that
each stream instance evaluates to the coordinates of the corresponding waypoint.
The condition following the when keyword ensures that evaluation occurs once,
when the waypoint is received.

Title Suppressed Due to Excessive Length 5

RTLola
Frontend

RTLola
MIR Translation StreamIR Rust

Formatter

Interpreter

C
Formatter

Input Trace

StreamIR
Framework

Rewriting

Rust
Monitor

C
Monitor

Monitor
Output

RTLola
Specification

Fig. 2: Overview of the StreamIR framework

The following streams are parameterized in the same way, ensuring that com-
putations are performed separately for each waypoint. The distance_to_way-
point stream computes the distance between the drone’s coordinates (given as
the input streams x, y) and each waypoint. For instance, the stream instance
with parameter 0 of distance_to_waypoint represents the distance to the first
waypoint. The waypoint_reached stream determines whether the drone ap-
proached a waypoint up to a predefined threshold. The unreached_waypoints
stream collects the indices of waypoints not yet reached. This behavior is imple-
mented with the close clause, which removes an instance once the corresponding
waypoint has been reached. From this, the current_waypoint stream is derived
by selecting the minimal index among the unreached waypoints.

Finally, two trigger conditions are defined to notify the operator. The first
trigger (line 35) signals when all waypoints have been reached. The second trigger
(line 39) signals when the distance to the next waypoint has increased continu-
ously for five seconds.

4 Extending the RTLola Compiler

The StreamIR framework [2] introduces an intermediate representation, StreamIR,
which serves as a compilation step for translating RTLola into multiple tar-
get languages. While RTLola specifications define streams relationally through
stream expressions, StreamIR provides an imperative representation of the mon-
itor. In contrast to general-purpose intermediate representations such as LLVM,
StreamIR remains closely aligned with stream-based languages, offering con-
structs such as explicit stream evaluation. This design enables optimizations be-
yond those possible at the specification level [5]. Furthermore, because StreamIR
preserves assumptions specific to stream-based semantics, it permits additional
optimizations that cannot be performed by the compiler of the target language,
as shown in [2]. Building on this framework, for this project we extend StreamIR
with a backend for compilation to C, enabling efficient use of RTLola on a mi-
crocontroller.

Figure 2 provides an overview of the StreamIR framework. First, the RTLola
specification is parsed by the RTLola frontend, which produces the RTLolaMIR,
a representation enriched with analysis results but still closely resembling the
original specification. This MIR is then translated into StreamIR, which sup-
ports a wide range of optimizations through rewriting rules applied to its struc-

6 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

ture. After optimization, the StreamIR can either be interpreted via just-in-time
compilation or compiled into different target languages. For the purpose of this
work, we extended the framework with a backend that generates highly memory-
efficient C code suitable for execution on microcontrollers.

A critical requirement for running monitors on microcontrollers is a bounded,
heapless memory footprint. Some specifications used in our drone applications
rely on parameterized streams, which by default may require unbounded mem-
ory. To address this, we introduced annotations for parameterized streams that
allow the user to specify an upper bound on the number of stream instances.
Eviction strategies then ensure that the number of active instances never ex-
ceeds this bound, restoring memory boundedness. This mechanism enables the
generation of heapless code, which is essential for executing monitors on micro-
controllers without relying on a dynamic memory allocator.

5 Implementation & Evaluation

For the evaluation, we compile RTLola specifications to C and report the mem-
ory usage of the produced code and the binary size. Since the drone has limited
hardware capabilities, the monitor needs to be efficient not only regarding run-
time but also regarding memory.

We have evaluated our approach on three specifications, monitoring the po-
sition of the drone. The first specification is described in Section 3 and checks if,
given a set of waypoints, all waypoints are reached during the flight. These way-
points describe the mission of the flight test. The second specification describes
a tube around the flight path of the drone to check if it diverges from the plan.
This specification is used to detect early errors in the flight controller. The last
specification describes a geofence from the drone, i.e., an area where the drone
can fly. If the drone violates this specification, a countermeasure is initiated to
land the drone immediately.

We report the results of the experiments in Table 1. It shows the compiled
size of the different specifications for the Crazyflie microprocessor, separated into
Flash and RAM usage. Furthermore, we differentiate between the bounded pa-
rameterized implementation and an unrolled variant, where each parameterized
stream instance is listed in the specification as a separate stream definition.

As expected, the unrolled variants are predominantly larger than their pa-
rameterized counterparts in both Flash and RAM. The reduction in code size
is particularly pronounced for geofence and waypoints, where parameterized im-
plementations drastically reduce LOC and Flash. Tube is an exception: its RAM
usage is higher for the parameterized version, but the reduction in Flash clearly
dominates.

To test the specifications, we integrated the generated monitors into the
Crazyflie setup and executed an autonomous waypoint mission. Figure 3a shows
the flight area on the left. All flights were conducted in a net-enclosed environ-
ment to ensure the safety of both the drone and the operators. Figure 3 illustrates
a representative flight. The red line indicates the actual trajectory of the drone,

Title Suppressed Due to Excessive Length 7

Spec Parameterized Unrolled

LOC Flash RAM LOC Flash RAM

geofence 92 32.1 KB 0.6 KB 483 50.8 KB 1.0 KB
tube 111 33.6 KB 3.6 KB 344 47.0 KB 1.2 KB
waypoints 37 13.8 KB 0.3 KB 100 21.2 KB 0.4 KB

Table 1: Comparison of LOC, Flash (text+data) and RAM (bss+data) for pa-
rameterized and unrolled variants

(a) The view of the flight area.

(b) A flight of the drone (red line), the
waypoints (black crosses), and the in-
tended flight path (green line)

Fig. 3: The Crazyflie drone used for the presented experiments.

the green line represents the planned trajectory, and the black crosses mark the
waypoints as described in Section 3. The observed deviation from the intended
path highlights the importance of monitoring during flight.

6 Conclusion

In this case study, we examined the integration of runtime monitors into the
Crazyflie micro-drone. To this end, we extended the RTLola compiler frame-
work with a C backend supporting bounded parameterization. Previously, pa-
rameterized streams had to be unrolled to generate monitors executable on heap-
less embedded devices. The bounded parameterization approach allows specifi-
cations to remain compact and manageable while maintaining executability on
such targets.

We evaluated this approach by comparing the flash and RAM requirements of
monitors generated from parameterized and unrolled specifications. The results
indicate that monitors based on bounded parameterized specifications require
less flash and RAM than those based on unrolled specifications, demonstrating
their suitability for embedded runtime monitoring.

8 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

A The Waypoint Specification

A.1 The parameterized Specification

1 import math
2 input x : Float32
3 input y : Float32
4
5 constant UNREACHABLE: (Float32, Float32) := (-1.0, -1.0)
6
7 input wp_x: Float32
8 input wp_y: Float32
9 output waypoint_idx:UInt @wp_x := waypoint_idx.offset(by:

-1).defaults(to: 0) + 1
10
11 output waypoint(idx: UInt)
12 spawn with waypoint_idx
13 eval when waypoint_idx == idx with (wp_x, wp_y)
14
15 output distance_to_waypoint(idx: UInt)
16 spawn with waypoint_idx
17 eval with sqrt((x - waypoint(idx).hold(or: UNREACHABLE).0)**2.0 +

(y - waypoint(idx).hold(or: UNREACHABLE).1)**2.0)
18
19 output waypoint_reached(idx: UInt)
20 spawn with waypoint_idx
21 eval with waypoint_reached(idx).offset(by: -1).defaults(to: false)
22 || (current_waypoint == idx &&

distance_to_waypoint(idx) < 25.0)
23
24 output unreached_waypoints(idx: UInt)
25 spawn with waypoint_idx
26 eval @(x&&y) with idx
27 close @(x&&y) when waypoint_reached(idx).get(or:false)
28
29 output current_waypoint @(x&&y) :=

unreached_waypoints.aggregate(over_instances:all, using:
min).defaults(to: 0)

30
31 output finished @(x&&y) :=

waypoint_reached.aggregate(over_instances: all, using: forall)
32 trigger finished "All Waypoints reached successfully"
33
34 output distance_to_next @(x&&y) :=

distance_to_waypoint(current_waypoint).hold(or: 999.0)
35 output distance_to_next_increased := distance_to_next >

distance_to_next.offset(by: -1).defaults(to: 999.0)
36 trigger @2Hz distance_to_next_increased.aggregate(over: 5s, using:

forall) "Drifting away from next waypoint"

Title Suppressed Due to Excessive Length 9

A.2 The unrolled Specification

1 import math
2 input x : Float32
3 input y : Float32
4
5 constant UNREACHABLE: (Float32, Float32) := (-1.0, -1.0)
6
7 constant waypoint0 : (Float32, Float32) := (0.0, 0.0)
8 constant waypoint1 : (Float32, Float32) := (2.0, 0.0)
9 constant waypoint2 : (Float32, Float32) := (2.0, 1.0)

10 constant waypoint3 : (Float32, Float32) := (2.0, 2.0)
11 constant waypoint4 : (Float32, Float32) := (3.0, 2.0)
12 constant waypoint5 : (Float32, Float32) := (2.0, 3.0)
13 constant waypoint6 : (Float32, Float32) := (5.0, 3.0)
14 constant waypoint7 : (Float32, Float32) := (3.0, 3.0)
15 constant waypoint8 : (Float32, Float32) := (2.0, 1.0)
16 constant waypoint9 : (Float32, Float32) := (0.0, 0.0)
17
18 output distance_to_waypoint0
19 eval with sqrt((x - waypoint0.0)**2.0 + (y - waypoint0.1)**2.0)
20 output distance_to_waypoint1
21 eval with sqrt((x - waypoint1.0)**2.0 + (y - waypoint1.1)**2.0)
22 output distance_to_waypoint2
23 eval with sqrt((x - waypoint2.0)**2.0 + (y - waypoint2.1)**2.0)
24 output distance_to_waypoint3
25 eval with sqrt((x - waypoint3.0)**2.0 + (y - waypoint3.1)**2.0)
26 output distance_to_waypoint4
27 eval with sqrt((x - waypoint4.0)**2.0 + (y - waypoint4.1)**2.0)
28 output distance_to_waypoint5
29 eval with sqrt((x - waypoint5.0)**2.0 + (y - waypoint5.1)**2.0)
30 output distance_to_waypoint6
31 eval with sqrt((x - waypoint6.0)**2.0 + (y - waypoint6.1)**2.0)
32 output distance_to_waypoint7
33 eval with sqrt((x - waypoint7.0)**2.0 + (y - waypoint7.1)**2.0)
34 output distance_to_waypoint8
35 eval with sqrt((x - waypoint8.0)**2.0 + (y - waypoint8.1)**2.0)
36 output distance_to_waypoint9
37 eval with sqrt((x - waypoint9.0)**2.0 + (y - waypoint9.1)**2.0)
38
39 output waypoint0_reached
40 eval @(x&&y) with waypoint0_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 0 &&
distance_to_waypoint0.hold(or: 0.0) < 25.0)

41 output waypoint1_reached
42 eval @(x&&y) with waypoint1_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 1 &&
distance_to_waypoint1.hold(or: 0.0) < 25.0)

43 output waypoint2_reached

10 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

44 eval @(x&&y) with waypoint2_reached.offset(by:-1).defaults(to:
false) || (current_waypoint.hold(or: 0) == 2 &&
distance_to_waypoint2.hold(or: 0.0) < 25.0)

45 output waypoint3_reached
46 eval @(x&&y) with waypoint3_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 3 &&
distance_to_waypoint3.hold(or: 0.0) < 25.0)

47 output waypoint4_reached
48 eval @(x&&y) with waypoint4_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 4 &&
distance_to_waypoint4.hold(or: 0.0) < 25.0)

49 output waypoint5_reached
50 eval @(x&&y) with waypoint5_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 5 &&
distance_to_waypoint5.hold(or: 0.0) < 25.0)

51 output waypoint6_reached
52 eval @(x&&y) with waypoint6_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 6 &&
distance_to_waypoint6.hold(or: 0.0) < 25.0)

53 output waypoint7_reached
54 eval @(x&&y) with waypoint7_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 7 &&
distance_to_waypoint7.hold(or: 0.0) < 25.0)

55 output waypoint8_reached
56 eval @(x&&y) with waypoint8_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 8 &&
distance_to_waypoint8.hold(or: 0.0) < 25.0)

57 output waypoint9_reached
58 eval @(x&&y) with waypoint9_reached.offset(by:-1).defaults(to:

false) || (current_waypoint.hold(or: 0) == 9 &&
distance_to_waypoint9.hold(or: 0.0) < 25.0)

59
60 output finished @(x&&y) := waypoint0_reached &&
61 waypoint1_reached &&
62 waypoint2_reached &&
63 waypoint3_reached &&
64 waypoint4_reached &&
65 waypoint5_reached &&
66 waypoint6_reached &&
67 waypoint7_reached &&
68 waypoint8_reached &&
69 waypoint9_reached
70
71 trigger finished "All Waypoints reached successfully"
72
73 output current_waypoint
74 eval @(x&&y) when !waypoint0_reached.offset(by:-1).defaults(to:

false) with 0
75 eval @(x&&y) when !waypoint1_reached.offset(by:-1).defaults(to:

false) with 1

Title Suppressed Due to Excessive Length 11

76 eval @(x&&y) when !waypoint2_reached.offset(by:-1).defaults(to:
false) with 2

77 eval @(x&&y) when !waypoint3_reached.offset(by:-1).defaults(to:
false) with 3

78 eval @(x&&y) when !waypoint4_reached.offset(by:-1).defaults(to:
false) with 4

79 eval @(x&&y) when !waypoint5_reached.offset(by:-1).defaults(to:
false) with 5

80 eval @(x&&y) when !waypoint6_reached.offset(by:-1).defaults(to:
false) with 6

81 eval @(x&&y) when !waypoint7_reached.offset(by:-1).defaults(to:
false) with 7

82 eval @(x&&y) when !waypoint8_reached.offset(by:-1).defaults(to:
false) with 8

83 eval @(x&&y) when !waypoint9_reached.offset(by:-1).defaults(to:
false) with 9

84
85 output distance_to_next
86 eval @(x&&y) when current_waypoint.hold(or: 0) == 0 with

distance_to_waypoint0
87 eval @(x&&y) when current_waypoint.hold(or: 0) == 1 with

distance_to_waypoint1
88 eval @(x&&y) when current_waypoint.hold(or: 0) == 2 with

distance_to_waypoint2
89 eval @(x&&y) when current_waypoint.hold(or: 0) == 3 with

distance_to_waypoint3
90 eval @(x&&y) when current_waypoint.hold(or: 0) == 4 with

distance_to_waypoint4
91 eval @(x&&y) when current_waypoint.hold(or: 0) == 5 with

distance_to_waypoint5
92 eval @(x&&y) when current_waypoint.hold(or: 0) == 6 with

distance_to_waypoint6
93 eval @(x&&y) when current_waypoint.hold(or: 0) == 7 with

distance_to_waypoint7
94 eval @(x&&y) when current_waypoint.hold(or: 0) == 8 with

distance_to_waypoint8
95 eval @(x&&y) when current_waypoint.hold(or: 0) == 9 with

distance_to_waypoint9
96
97 output distance_to_next1 @(x&&y) := distance_to_next.hold(or: 0.0)
98
99 output distance_to_next_increased @(x&&y) := distance_to_next1 >

distance_to_next1.offset(by: -1).defaults(to: 999.0)
100 trigger @2Hz distance_to_next_increased.aggregate(over: 5s, using:

forall) "Drifting away from next waypoint"

12 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

B The Tube Specification

B.1 The parameterized Specification

1 import math
2 input x : Float32
3 input y : Float32
4 input z : Float32
5 input heading : Float32
6 input velocity : Float32
7
8 // Tube Points
9 input p0_x: Float32

10 input p0_y: Float32
11 input p0_z: Float32
12 input p1_x: Float32
13 input p1_y: Float32
14 input p1_z: Float32
15
16 constant threshold: Float32 := 350.0
17
18 // Knots to m/s
19 output velocity_ms := velocity * 0.514444
20
21 constant PI : Float32 := 3.14519
22 constant c_epsilon : Float32 := 0.0000001
23
24 // Direction vector of line segment
25 #[bounded="10"]
26 output ld(x0, y0, z0, x1, y1, z1)
27 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
28 eval @x with (x1 - x0, y1 - y0, z1 - z0)
29
30 // Direction vector from start of line to current position
31 #[bounded="10"]
32 output lc(x0, y0, z0, x1, y1, z1)
33 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
34 eval with (x - x0, y - y0, z - z0)
35
36 // Compute vector projection of flight vector onto direction vector

of line
37 #[bounded="10"]
38 output lfp_len(x0, y0, z0, x1, y1, z1)
39 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
40 eval with (ld(x0, y0, z0, x1, y1, z1).0 * lc(x0, y0, z0, x1, y1,

z1).0 + ld(x0, y0, z0, x1, y1, z1).1 * lc(x0, y0, z0, x1,
y1, z1).1 + ld(x0, y0, z0, x1, y1, z1).2 * lc(x0, y0, z0,
x1, y1, z1).2) / (ld(x0, y0, z0, x1, y1, z1).0 ** 2.0 +
ld(x0, y0, z0, x1, y1, z1).1**2.0 + ld(x0, y0, z0, x1, y1,
z1).2**2.0)

Title Suppressed Due to Excessive Length 13

41
42 #[bounded="10"]
43 output lfp_proj(x0, y0, z0, x1, y1, z1)
44 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
45 eval with (lfp_len(x0, y0, z0, x1, y1, z1) * ld(x0, y0, z0, x1,

y1, z1).0, lfp_len(x0, y0, z0, x1, y1, z1) * ld(x0, y0, z0,
x1, y1, z1).1, lfp_len(x0, y0, z0, x1, y1, z1) * ld(x0, y0,
z0, x1, y1, z1).2)

46
47 #[bounded="10"]
48 output lfp(x0, y0, z0, x1, y1, z1)
49 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
50 eval with (x0 + lfp_proj(x0, y0, z0, x1, y1, z1).0, y0 +

lfp_proj(x0, y0, z0, x1, y1, z1).1, z0 + lfp_proj(x0, y0,
z0, x1, y1, z1).2)

51
52 #[bounded="10"]
53 output d_lfp(x0, y0, z0, x1, y1, z1)
54 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
55 eval with sqrt((lfp(x0, y0, z0, x1, y1, z1).0 - x)**2.0 +

(lfp(x0, y0, z0, x1, y1, z1).1 - y)**2.0 + (lfp(x0, y0, z0,
x1, y1, z1).2 - z)**2.0)

56
57 #[bounded="10"]
58 output d_start(x0, y0, z0, x1, y1, z1)
59 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
60 eval with sqrt((x0 - x)**2.0 + (y0 - y)**2.0 + (z0 - z)**2.0)
61
62 #[bounded="10"]
63 output d_end(x0, y0, z0, x1, y1, z1)
64 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
65 eval with sqrt((x1 - x)**2.0 + (y1 - y)**2.0 + (z1 - z)**2.0)
66
67 #[bounded="10"]
68 output d_line(x0, y0, z0, x1, y1, z1)
69 spawn with (p0_x, p0_y, p0_z, p1_x, p1_y, p1_z)
70 eval with if lfp_len(x0, y0, z0, x1, y1, z1) <= 0.0 then

d_start(x0, y0, z0, x1, y1, z1)
71 else if lfp_len(x0, y0, z0, x1, y1, z1) >= 1.0 then

d_end(x0, y0, z0, x1, y1, z1)
72 else d_lfp(x0, y0, z0, x1, y1, z1)
73
74 output mdp := d_line.aggregate(over_instances: fresh, using:

argmin).defaults(to: (0.0,0.0,0.0,0.0,0.0,0.0))
75
76 output closest_point_cart := if lfp_len(mdp.0, mdp.1, mdp.2, mdp.3,

mdp.4, mdp.5).hold(or:0.0) <= 0.0 then (mdp.0, mdp.1, mdp.2)
77 else if lfp_len(mdp.0, mdp.1, mdp.2,

mdp.3, mdp.4, mdp.5).hold(or:0.0) >=
1.0 then (mdp.3, mdp.4, mdp.5)

14 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

78 else lfp(mdp.0, mdp.1, mdp.2, mdp.3,
mdp.4, mdp.5).hold(or: (0.0,0.0,0.0))

79
80 output closest_point := (closest_point_cart.1, closest_point_cart.0,

closest_point_cart.2)
81
82 // Compute visualization vector
83 output distance_dir_global := (x - closest_point_cart.0, y -

closest_point_cart.1, z - closest_point_cart.2)
84
85 // Normal vector of the plane
86 output plane_normal := ld(mdp.0, mdp.1, mdp.2, mdp.3, mdp.4,

mdp.5).hold(or: (0.0,0.0,0.0))
87 output plane_normal_len := sqrt(plane_normal.0 ** 2.0 +

plane_normal.1 ** 2.0 + plane_normal.2 ** 2.0)
88 output n := (plane_normal.0/plane_normal_len,

plane_normal.1/plane_normal_len, plane_normal.2/plane_normal_len)
89
90 // Global Up Vector defined as unit vector pointing in z direction,

or y direction if normal points exactly up
91 output up: (Float32,Float32,Float32) := if abs(n.2 - 1.0) < 0.000001

then (0.0,1.0,0.0) else (0.0,0.0,1.0)
92
93 // Compute Right vector orthogonal to normal vector and up vector

using cross product
94 output right := (n.1 * up.2 - n.2 * up.1, n.2 * up.0 - n.0 * up.2,

n.0 * up.1 - n.1 * up.0)
95
96 // Compute local Up vector orthogonal to the normal vector and the

right vector using cross product
97 output lup := (n.1 * right.2 - n.2 * right.1, n.2 * right.0 - n.0 *

right.2, n.0 * right.1 - n.1 * right.0)
98
99 output scale_a := distance_dir_global.0 * right.0 +

distance_dir_global.1 * right.1 + distance_dir_global.2 * right.2
100 output scale_b := distance_dir_global.0 * lup.0 +

distance_dir_global.1 * lup.1 + distance_dir_global.2 * lup.2
101 output distance_dir := (scale_a / threshold , scale_b / threshold)
102
103 output min_distance := d_line.aggregate(over_instances: fresh,

using: min).defaults(to: 0.0)
104 output violated := min_distance > threshold
105 output long_violation @2Hz := violated.aggregate(over_exactly:25s,

using:forall).defaults(to: false)
106
107 trigger violated "warning:Return to flight path!"
108 trigger long_violation "violation:Countermeasures started!"

Title Suppressed Due to Excessive Length 15

C The Geofence Specification

1 import math
2 input x : Float32
3 input y : Float32
4 input altitude : Float32
5 input heading : Float32
6 input velocity : Float32
7
8 // Goefence points given at start of monitor
9 input p0_x: Float32

10 input p0_y: Float32
11 input p1_x: Float32
12 input p1_y: Float32
13
14 // Knots to m/s
15 output velocity_ms := velocity * 0.514444
16 constant c_epsilon : Float32 := 0.0000001
17
18 // Computes the vehicle line
19 output diff_x := x - x.offset(by: -1).defaults(to: x)
20 output diff_y := y - y.offset(by: -1).defaults(to: y)
21 output isFnc := diff_x != 0.0
22 output m := if isFnc then (diff_y) / (diff_x) else 0.0
23 output b := if isFnc then y-(m*x) else 0.0
24 output dstToPnt := sqrt(diff_x**2.0 + diff_y**2.0)
25
26 // true -> going into negative x direction; false -> positive x
27 output o_x := if abs(diff_x) < c_epsilon then false else diff_x < 0.0
28 output o_y := if abs(diff_y) < c_epsilon then false else diff_y < 0.0
29
30
31 // Convert geofence points to cartesian coordinates
32 output m_line(x0, y0, x1, y1)
33 spawn with (p0_x, p0_y, p1_x, p1_y)
34 eval @p0_x with (y1 - y0) / (x1 - x0)
35
36 output b_line(x0, y0, x1, y1)
37 spawn with (p0_x, p0_y, p1_x, p1_y)
38 eval @p0_x with y1 - (m_line(x0, y0, x1, y1) * x1)
39
40 output intersecting(x0, y0, x1, y1)
41 spawn with (p0_x, p0_y, p1_x, p1_y)
42 eval with m != m_line(x0, y0, x1, y1).hold(or: 0.0) || b =

b_line(x0, y0, x1, y1).hold(or: 0.0)
43
44 output intersection_x(x0, y0, x1, y1)
45 spawn with (p0_x, p0_y, p1_x, p1_y)

16 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

46 eval when isFnc && intersecting(x0, y0, x1, y1) with (b -
b_line(x0, y0, x1, y1).hold(or: 0.0)) / (m_line(x0, y0, x1,
y1).hold(or: 0.0) - m)

47
48 output intersection_y(x0, y0, x1, y1)
49 spawn with (p0_x, p0_y, p1_x, p1_y)
50 eval when isFnc && intersecting(x0, y0, x1, y1) with m_line(x0,

y0, x1, y1).hold(or: 0.0) * intersection_x(x0, y0, x1, y1) +
b_line(x0, y0, x1, y1).hold(or: 0.0)

51
52 output inbounds(x0, y0, x1, y1)
53 spawn with (p0_x, p0_y, p1_x, p1_y)
54 eval when isFnc && intersecting(x0, y0, x1, y1) with if x0 < x1

then (intersection_x(x0, y0, x1, y1) >= x0 and
intersection_x(x0, y0, x1, y1) <= x1)

55 else (intersection_x(x0, y0, x1, y1) <= x0 and
intersection_x(x0, y0, x1, y1) >= x1)

56
57 output in_direction(x0, y0, x1, y1)
58 spawn with (p0_x, p0_y, p1_x, p1_y)
59 eval when isFnc && intersecting(x0, y0, x1, y1) with if o_x then

intersection_x(x0, y0, x1, y1) < x else intersection_x(x0,
y0, x1, y1) > x

60
61 output violations(x0, y0, x1, y1)
62 spawn with (p0_x, p0_y, p1_x, p1_y)
63 eval when isFnc && intersecting(x0, y0, x1, y1) &&

in_direction(x0, y0, x1, y1) && inbounds(x0, y0, x1, y1)
with (intersection_x(x0, y0, x1, y1), intersection_y(x0, y0,
x1, y1))

64
65 output inside eval when isFnc with

violations.aggregate(over_instances: fresh, using: count) % 2 ==
1

66
67 output distance_to_violations(x0, y0, x1, y1)
68 spawn with (p0_x, p0_y, p1_x, p1_y)
69 eval when isFnc && intersecting(x0, y0, x1, y1) &&

in_direction(x0, y0, x1, y1) && inbounds(x0, y0, x1, y1)
with sqrt((intersection_x(x0, y0, x1, y1) - x)**2.0 +
(intersection_y(x0, y0, x1, y1) - y)**2.0)

70
71 output nvl eval when isFnc with

distance_to_violations.aggregate(over_instances: fresh, using:
argmin).defaults(to: (0.0,0.0,0.0,0.0))

72 output next_violation_x eval when isFnc with intersection_x(nvl.0,
nvl.1, nvl.2, nvl.3).hold(or: 0.0)

73 output next_violation_y eval when isFnc with intersection_y(nvl.0,
nvl.1, nvl.2, nvl.3).hold(or: 0.0)

Title Suppressed Due to Excessive Length 17

74 output next_violation eval when isFnc with (next_violation_x,
next_violation_y)

75
76 output distance_to_violation eval when isFnc with

distance_to_violations(nvl.0, nvl.1, nvl.2, nvl.3).hold(or: 0.0)
77
78 output time_to(x0, y0, x1, y1)
79 spawn with (p0_x, p0_y, p1_x, p1_y)
80 eval when isFnc && intersecting(x0, y0, x1, y1) &&

in_direction(x0, y0, x1, y1) && inbounds(x0, y0, x1, y1)
with distance_to_violations(x0, y0, x1, y1) / velocity_ms

81
82 output time_to_violation eval when isFnc with time_to(nvl.0, nvl.1,

nvl.2, nvl.3).hold(or: 0.0)
83
84 trigger eval when isFnc && !inside with "violation:Outside of

geofence. Return to flight area immediately"

References

1. The Crazyflie flying development platform. https://www.bitcraze.io/products/
crazyflie-2-1-plus/, accessed: 2025-09-09

2. Baumeister, J., Correnson, A., Finkbeiner, B., Scheerer, F.: An intermediate pro-
gram representation for optimizing stream-based languages. In: Piskac, R., Raka-
maric, Z. (eds.) Computer Aided Verification - 37th International Conference, CAV
2025, Zagreb, Croatia, July 23-25, 2025, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 15933, pp. 393–407. Springer (2025). https://doi.org/10.
1007/978-3-031-98682-6_20, https://doi.org/10.1007/978-3-031-98682-6_20

3. Baumeister, J., Finkbeiner, B., Kohn, F., Löhr, F., Manfredi, G., Schirmer, S.,
Torens, C.: Monitoring unmanned aircraft: Specification, integration, and lessons-
learned. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 14682, pp. 207–
218. Springer (2024). https://doi.org/10.1007/978-3-031-65630-9_10, https:
//doi.org/10.1007/978-3-031-65630-9_10

4. Baumeister, J., Finkbeiner, B., Kohn, F., Scheerer, F.: A tutorial on stream-based
monitoring. In: Platzer, A., Rozier, K.Y., Pradella, M., Rossi, M. (eds.) Formal
Methods - 26th International Symposium, FM 2024, Milan, Italy, September 9-
13, 2024, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14934,
pp. 624–648. Springer (2024). https://doi.org/10.1007/978-3-031-71177-0_33,
https://doi.org/10.1007/978-3-031-71177-0_33

5. Baumeister, J., Finkbeiner, B., Kruse, M., Schwenger, M.: Automatic optimizations
for stream-based monitoring languages. In: Deshmukh, J., Nickovic, D. (eds.) Run-
time Verification - 20th International Conference, RV 2020, Los Angeles, CA, USA,
October 6-9, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12399,
pp. 451–461. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7_25,
https://doi.org/10.1007/978-3-030-60508-7_25

6. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: Rtlola
cleared for take-off: Monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.

https://www.bitcraze.io/products/crazyflie-2-1-plus/
https://www.bitcraze.io/products/crazyflie-2-1-plus/
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-60508-7_25

18 J. Baumeister, V. Bhaduri, B. Finkbeiner, F. Kohn, F. Scheerer

(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12225, pp. 28–39. Springer (2020). https://doi.org/10.
1007/978-3-030-53291-8_3, https://doi.org/10.1007/978-3-030-53291-8_3

7. Biewer, S., Finkbeiner, B., Hermanns, H., Köhl, M.A., Schnitzer, Y., Schwenger,
M.: Rtlola on board: Testing real driving emissions on your phone. In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 27th International Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12652, pp. 365–372. Springer (2021). https://doi.org/10.
1007/978-3-030-72013-1_20, https://doi.org/10.1007/978-3-030-72013-1_20

https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20

	Tiny Drone, Tiny Resources: Deploying RTLola Monitors on the Crazyflie Platform

